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Abstract

We investigate the one-dimensional Keller-Segel model where the dif-
fusion is replaced by a non-local operator, namely the fractional diffusion
with exponent 0 < o < 2. We prove some features related to the classi-
cal two-dimensional Keller-Segel system: blow-up may or may not occur
depending on the initial data. More precisely a singularity appears in
finite time when o < 1 and the initial configuration of cells is sufficiently
concentrated. On the other hand, global existence holds true for a < 1 if
the initial density is small enough in the sense of the L' norm.

Keywords. Self-organization, chemotaxis, fractional diffusion, global exis-
tence, blow-up.

1 Introduction

Chemotaxis is the directed motion of cells in response to various chemical
clues. It plays a key role in developmental biology, and more generally in self-
organization of cell populations. Several categories of mathematical models
have been proposed to describe this organization process. Depending upon the
level of description required, micro-, meso- or macroscopic models can be used
[27, 9, 28]. Mesoscopic models consist of kinetic (scattering) equations well-
suited for describing the motion of bacteria such as Escherichia coli which un-
dergo a run and tumble process [11, 5]. Macroscopic models consist of parabolic
(drift-diffusion) equations and are well-suited for describing motion of large cells
such as the slime mold amoebae Dictyostelium discoideum [17, 12, 15]. We focus
on the macroscopic setting in this paper.
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The so-called Keller-Segel model exhibits a very rich behaviour, emphasized
by the critical mass phenomenon arising in two dimensions of space. The Keller-
Segel system writes in a simple formulation [18]:

op(t,x) = Ap(t,x) — V- (p(t,z)Ve(t,z)) , t>0, xcR? (1.1a)
—Ac(t,z) = p(t,x). (1.1b)

Here p(t,x) denotes the cell density and c(¢, z) denotes the concentration of the
chemical attractant. The first contribution in the right hand side of (1.1a) ex-
presses the tendency of cells to diffuse under their own Brownian motion whereas
the second term expresses their tendency to aggregate due to the presence of
the chemical. In two dimensions of space the two opposite tendencies are evenly
balanced and the global behavior of the solution depends on the total mass of
cellss M = f]R po(x)dz. More precisely, for M > 8m blow-up occurs in finite
time (aggregation overwhelms diffusion) and for M < 87 solutions are global in
time (diffusion wins the competition) [4].

However in one dimension of space diffusion is always stronger than aggre-
gation and blow-up never occurs for systems such as (1.1) [25, 16, 26].

In this paper we study the system (1.1) in one space dimension with the cell
diffusion being ruled by fractional diffusion. The usual Laplacian in (1.1a) is
therefore replaced by the fractional Laplacian. The non-local parabolic equation
writes as follows:

Op(t,x) = —A%p(t,x) — Oy (pOyc) , t>0, xz€R (1.2a)

O c(t, ) = plt,) (1.2b)

equipped with suitable initial condition p(0,-) = po and decay conditions at
infinity. For an exponent a € (0,2], the positive operator A% = (—A)*/? is

defined in Fourier variables by A® f &) =€ |af(§) An alternative representation
is given by:

wrey o [ A@ =S [ 20@) = fa k)~ S h)
Af(x)—a/yeRidy a/heR dh,

|x_y|1+a |h|1+a

where ¢, is some normalizing factor.
Clearly (1.2b) does not determine ¢ uniquely. It is customary to specify ¢,
since c¢ itself does not appear in (1.2a). Namely we opt for:

crlto) = = [ sen(e = y)olt.)dy. (1.3)

which is well defined for p having finite mass. This corresponds to the solution
given by convolution with the one-dimensional Green function:

clt.) = =5 [ o= ulo(t.0)dy, (1.4)

which is well defined whenever the mass fR p(t,y)dy and the first moment
Jg lylp(t,y)dy are finite. One can think of this solution as the limit of ¢, as



v — 0 where ¢, is solution to the elliptic problem: —82% ¢, + vc¢, = p. In the
sequel we restrict our attention to the limiting case v = 0 for the sake of sim-
plicity. Global existence results would not be affected by working with v > 0
and blow-up results would be slightly modified (due to the fast decay of the
interacting kernel at infinity, see Remark 3.2).

Non-local operators, and in particular the fractional Laplacian, have received
a lot of attention recently [6, 7, 8]. In biology the motivation comes from the fact
that in many cases organisms adopt Lévy-flight search strategies and therefore
dispersal is better modelled by non-local operators [2, 13, 14, 19, 20]. Focusing
on the one-dimensional case may seem unnatural from the biological viewpoint.
However we have in mind seeking a critical mass phenomenon as it has been
derived for the two-dimensional classical Keller-Segel model (1.1). It appears
that e = d is the critical fractional exponent to state such a result. Therefore it
makes only sense when d = 2 or d = 1. We concentrate on the one dimensional
case in this paper.

The system (1.2) was first studied in [13] where it was shown that global
existence holds true for 1 < a < 2 assuming that pg € L' N L? and p) € L?.
The system (1.2) has also been studied by Biler, Karch and Laurengot [3], and
Li and Rodrigo [21, 22]. As opposed to [21, 22] our global existence result is
more involved and our blow-up criterion is somewhat simpler. In [3] the authors
do not address global existence issue, but they consider a more general setting
for stating blow-up results. Both groups do not restrict to the one-dimensional
case.

We aim at providing here global existence versus blow-up results in the same
spirit as in the dichotomy arising in the classical two-dimensional Keller-Segel
system (1.1). More precisely, we are able to prove that solutions are global in
time in the ’'fair-competition’ case o = 1, if the total mass M is assumed to be
small enough. As far as we know, proving blow-up for large mass in the case
a =1 is an open problem. In the case a < 1 we show that solutions may exist
globally or may blow-up depending on the initial data. We provide explicit
criteria on the initial data py which determine whether chemotactic blow-up
arises or not.

In the case o > 1 our methods can be used to improve the results of [13] by
weakening the regularity hypotheses on the initial data.

Our two main results are contained in the following Theorems.

Theorem 1 (Global existence). Consider the system (1.2) for 0 < a < 1 with
initial data po € LP°(R) for some pg > 1/c. There exists a constant K1(a) such
that the condition,

lpollz1/e < Ki(a), (1.5)

guarantees existence of global weak solutions.

In addition, regularizing effects act for (1.2), and the density belongs to any LP
space for any positive time t > 0.

In the case 1 < a < 2, assume pg € LP°(R) for some py > 1. Then solutions
are global in time and belong to any LP space for all positive time t > 0.



To complete the picture it is natural to look for blow-up results in the super-
critical case. We shall prove in the sequel that the aggregation contribution can
overcome the diffusion effect in the case v < 1 under suitable restrictions on
the initial data. However describing the behaviour for initial data having large
mass in the case @ = 1 remains open. Our strategy fails because the constant
K3(«) in Theorem 2 below diverges when av — 1.

Theorem 2 (Blow-up). Consider the system (1.2) for 0 < o < 1 in one space
dimension with initial data po € L*((1 + |z|)dz). Assume in addition that the
density po is even. Then there exists a constant Ko(«) such that the condition,

e d) < Kpa) >, (1.6)

excludes global existence of reqular solution: a singularity must appear in finite
time.

Remark 1.1 (Ll/a is the natural space with respect to homogeneity). A simple
scaling argument shows that 1/c is the only exponent for which smallness as-
sumptions (1.5) and (1.6) are admissible. As a matter of fact, one easily checks
that the system (1.2) is invariant under the time-space dilation: px(t,x) =
A p(A7 A ), ea(t,z) = N2\, A\"tx). Furthermore this transfor-
mation preserves both the L' ® norm and the quantity M2 (Jg 1zlpo(x) dz) e

The paper is organized as follows: in Section 2 we prove global existence,
beginning with a simple but not complete argument based on L? estimates. The
proof is then achieved thanks to careful LP estimates. The key step consists in
performing suitable integration by parts with fractional diffusion. In Section
3 we prove blow-up of solutions. The paper is supplemented by numerical
illustrations of the two above-mentioned phenomena.
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2 Global existence for small initial data: proof
of Theorem 1

We start by stating some estimate which will be widely used throughout this
section.



Proposition 2.1 (Interpolation inequality). For any exponents 0 < a < 1 and
1 < p < 400, the following Gagliardo-Nirenberg type inequality holds true:

[rri@<cea e, oy, (2.1)
R

He/2

Proof. We distinguish between the cases @ < 1 and o = 1. In the former we
use first the Holder inequality to obtain:

/}R P (g ( pP! =) (g dm>1a </Rp1/a(x) dm>a

L)

oy 1Pl1/a s

where we have used the Sobolev embedding: H®/2? « [2/(1=2),
In the case @ = 1, we can use the following general result [24]: for any
A 1, S, q, 1,0 € R satisfying the following relations:

d d d
1<s5,¢g<r<o0,0<0<1l, A>—-———, u<-
s q

9(/\—§+g>+(1—9)<u—g+g>—o.

» S C|f e

Applying that to the particular choice: f = pP/2, X = 1/2, p = 0, s = 2,
r=2(p+1)/p, 0 =2/r, ¢ =2/p yields the result.

Observe that proceeding as above, the exponent p cannot be chosen arbi-
trarily (the constraint ¢ > 1 forces p < 2). However, there is a way to extend
it to any p > 1 by slightly modifying the argument: using f = pP/2, X\ = 1/2,
p=0,s=21r=2p+1)/p,0 =1/(p+1), ¢ =2 we get:

p/(2(p+1)) 1/(p+1) p/2(p+1)
</ PP () dm) < CHPP/QH o (/ o (z) dm)
R H R
_1\ 1/2(p+1)
1/(p+1) p=1
p/2 p+1
o <|p|1 ([ ) ) .

Raising this inequality to the power 2(p 4+ 1) leads to the result. O

d
r

?

we have,

i (2.2)

gc‘

2.1 A priori L? estimates

We complete here some existing results first derived by Escudero [13]. We use
Gagliardo-Nirenberg type inequalities instead of the Sobolev inequality used
n [13]. This allows us to study a wider range of a’s. We are concerned in
this section with the global existence of the Keller-Segel system with fractional



diffusion of cells when 1/2 < « < 1, using simple harmonic analysis estimates.
This will be extended below in Section 2.2 to any 0 < a < 1. The purpose of this
section is to derive simply a priori estimates which guarantee global existence of
solutions and to set the stage for our approach in Section 2.2. The constraints
on the exponent « here are an artefact of the method: in short the interpolation
of LY“ between L' and L? yields 1/2 < .

As it is now standard in such systems, we aim at deriving suitable LP norm
of the cell density [18, 10]. Due to the simple formulation of the fractional
diffusion in the Fourier space variable, we opt for p = 2. We will relax this
constraint in the next section. We have the following estimation:

d1

2
P lp(t)]]7

/R (—A®p(t, ) — By (p(t, 2)uc(t, 2)) plt, x) da

_/R(Aamp(t,x)fdx+%/Rp3(t,x)dx.

We then apply the Gagliardo-Nirenberg inequality (Proposition 2.1) for p = 2:

; (/R pt/e(t, x) dm) ’ : (2.3)

In the case a = 1 we obtain the decay of the L? norm providing that the mass
is small enough:

Gl < (~gamm +3) [Peod. (2.9

It follows that ||p(t)|l;2 < |lpoll 2, as soon as pg € L2 It is also possible to
conclude without assuming py € L2, by means of regularizing effects. In fact
using interpolation between L' and L3 it comes out that (2.4) also implies (when
the mass is small enough):

/p(t,x)?’ dz < C(2,a) HAQ/Qp(t)‘
R

d1l 2 1 1 —1 4
I 2 < S — - 2 .
=3 eI ( c<2,1>M+2)M eI

Therefore || p(t)||2 becomes finite in zero time. We shall come back to that later.
In the case o < 1 the Gagliardo-Nirenberg inequality (2.3) implies that:

d1 2 1 L 3
——||p(t 2§<— +_)/pt7xdx.
a2 POl = e almn. T2) L7

As opposed to the case a = 1, the quantity ||p(t)|| L1/« is not conserved in time.
Therefore we have to develop an alternative strategy as in [10] for the Keller-
Segel in dimension d > 2, where the criterion for global existence involves the
L%?-norm. Here we simply use the fact that L'/ can be interpolated between
L' and L2 if 1/2 < a < 1. As a consequence we have:

d1 5 1 1 / s
——|p(t <|- + = t,x)dr.
dt 2 Hp( )HL2 — ( C(an)M2a71|‘p(t)||i;2a 2) ]Rp ( (E) xz




Thus if the quantity M2~ po[|35% is small enough, then ||p(t)||z> automat-
ically decays for every time. We will see later that this criterion can be ame-
liorated, as the LY/ (before interpolation) appears to be the critical space for
this problem (analogous to L%2 in the classical Keller-Segel problem). To de-
rive this improved criterion we shall understand how the LP norms of the cell
density evolve, using more refined tools for integration by parts.

Remark 2.2. In the case 1 < a < 2, if we assume that py € L'NL? and
pb € L? we can work similarly as in [13] to obtain an a-priori estimate on
[02(E)|| p2r)- Then the Sobolev inequality gives a bound on ||p(t)|| e -

2.2 A priori LP estimates

Following [6, 8], the one-dimensional fractional Laplacian can be interpreted as
a ‘Dirichlet to Neumann problem’ on the two-dimensional half-space (with an
appropriate modification when « # 1). Namely it is related to the following
minimization problem. Given a function f(z) defined for € R (and belonging
to appropriate spaces, see [6] for details) find a function f.(z,y) defined on R x
(0, 00) coinciding with f(z) on the boundary: fi(z,0) = f(x), which minimizes
the weighted functional,

J(u) = %Aw/H§|Vu(x,y)|2yla dzdy . (2.5)

When « =1 this is nothing but the harmonic extension of p to the upper half-
space. The fractional Laplacian is then deduced from the normal derivative of
p«(z,y) on the boundary {y = 0} as described below. We will strongly use this
minimization property. It is worth noticing that the minimal value for .J is the
H*/2 norm of the trace f:

minJ(w) = [|f|l jros - (2.6)

We refer to [6] for a proof using the Fourier characterization of the H®/? norm.
The following Proposition enables to perform integration by parts with the
fractional Laplacian. Tt is inspired from [8, Proposition 5].

Proposition 2.3. Assume p(x) is regular, then the following estimate holds
true:

[ tonowae > L2 gz

Proof. For the sake of completeness, we recall the main lines of the proof of
Proposition 2.3. We begin with the case &« = 1 which is somewhat simpler.

The half-Laplacian. In short, the one-dimensional half-Laplacian Ap is the
normal derivative of the harmonic extension on the upper-half plane of p:

Ap(z) = —0yp.(,0),
where { —Ap.(z,y) =0 on R x(0,00),
pu(2,0) = plz).



Using this characterization, we are able to integrate by parts and to estimate
the following diffusion contribution (which appears in the proof of Theorem 1
below):

/ PP~ @) Ap(z) do = / PP~ (2, 0)Vpu(,0) - vda
R
/ /Vp” Y, y) - Vpa(z,y) dedy

= / /|Vpp/2my|2dacdy

24@—; / / V(). (a,y) P dedy.  (2.7)

p

We have used in the last step the fact that (p.)?/? and (pP/?). coincide on the

boundary {y = 0}. To conclude we use the fact that the minimal value for J
when a = 1 is the H'/2 norm of p.

The a/2—Laplacian. For any 0 < a < 2 the fractional Laplacian A%p can
be interpreted as follows [6]:

A%p(e) = lim [~y 9y pu(z,y)]

where { ~V - (¥'7Vp,) (z,y) =0 on R x (0,00),
p+(2,0) = p(z) .

In the same lines as (2.7) we are able to estimate the following diffusion
contribution:

/p”’l(x)/\“p(x) dw:/ PP (2, 0)y =V p.(x,0) - vdx
R

/ /Vp” Yz,y) -y Vpu(,y) dady

— / /|Vpp/2$y |2 1— ozdxdy

4 _
= @T/ / IV (072, (2, )Py~ dady
< 4(p—1) ‘

Z P2

WH (2.8)

Hu/2 ’
|

Proof of Theorem 1. The case 1 < o < 2 has already been treated in [13] (see
Remark 2.4 at the end of the proof), so we focus on the situation where 0 <
a < 1 in the sequel.



L' is the critical space. Following the lines of [18] and [10] we estimate
the evolution of the LP norms of the cell density:

d1 p—1
—= tp,,:—/ =Lt ) AYp(t, dm—l——/ Pt x) dx
dtpllp()l\L v (t, z)A%p(t, ) o P (t, )
4(p—1) p/2 H2 p—l/ p+1
- _— . 2.
<D el 2L [ rrena. o)

Using Proposition 2.1 we obtain:

2
[#titads <o) ol 20, @0
therefore
d1 4(p—1) p— 1) /
——lp®P, < [ - + PRt ) de. (2.11
O < (e + ) L e @
Choosing in particular p = 1/« we obtain that the LY norm is time-

decreasing whenever ||pol| 1/« is strictly smaller than %.

Regularizing effects. We shall prove within the next lines that the cell den-
sity p(t, ) belongs to any LP space for arbitrary positive time, provided that the
initial LP° norm is finite for some py > 1/a. The argument follows the main
lines of [18, 10].

First we shall relax the criterion on ||pgl| 71/« to

4

0 1/a<7
loolzore < o

IR (2.12)

This ensures that the LP°-norm, which is initially finite by assumption, is de-
creasing in time. As a consequence, we get the following upper-bound for any
truncation k£ > 0:

1(p(8) = k)l e < {a = p(ts) > BHOTVP Y (p(t) = k)| oo

M a—1/po
(%) loolon. (213)

Second, we extend the above strategy to the derivation of ||(p(t) —k(p))+ | e
for some k(p) > 0 to be chosen later:

G0 = k@)1,

< —%Hp(ﬂ - k(p))ﬁ-/QH?;a/Q + ]%1 /]R(p(t,a;) - k(p))ﬁ_"'l de
+ C(k,p) /R(p(tw) — k(p))?. dx + C(k,p) /R(p(t, ) — k(p)? " d.



The last term can be interpolated between L' and L”. The nonlinear contribu-
tion of homogeneity p + 1 goes as previously, except that we shall ensure here
that ||(p(t) — k(p))+| L1/« is strictly smaller than 4/(pC(p, «)) independently of
time.

Introduce the notation: Y,(t) = [|(p(t) — k(p))+|5. We have,

d B 4(p—1) p—1 e P g,
th”(“<< P2CE a0 — k@)l 7 )AJ”“’ )=k d
+O(Y,(t) +0(1).

Using the following interpolation inequality:

1-1/p
v <0 ([ (o) <k )
R
we obtain for k(p) large enough, thanks to (2.13),

d _
(8 < =8, (6)"/ PV + 0 (Y, (1)) + O(1),
where § is a positive constant, independent of time.
As a standard consequence, the following estimate holds true for any time
t > 0 smaller than a reference time T':

Yp(t) S C(T)tlipa

where the constant C(T") does not depend on the initial value Y;,(0). These a
priori estimates guarantee that the LP norms of p(t) (p > po) becomes finite for
t > 0.

Regularization step. So far we have only presented a priori estimates for
the LP norms of the solution. Once these a priori estimates are established
the proof of global existence can be performed by well known methods (see
for example [10, 4] for the Keller-Segel system) which we now describe briefly.
Following [8] we introduce the regularized system

8tp€(t7x) = 5a§xpe(t7x) - A(ypE(t7x) - 82? (psaxce) ’ t> 0) reR
(2.14a)

—03,c:(t,x) = pe(t, @) (2.14b)

where ¢ is a positive regular diffusion coefficient. It can be shown that (2.14)
admits global in time solutions [8]: the drift is bounded and the one-dimensional
Keller-Segel admits global in time solutions [25]. The regularization procedure
does not affect the above a priori estimates, hence we get uniform estimates
with respect to g, that are similar to (2.11). Before passing to the limit we need
to use the Aubin-Lions method [1, 23, 29, 4] to gain compactness from the time

integrability of the Sobolev norm ||pp/2(t)||fqa/2 in (2.9),(2.10). O

10



Remark 2.4 (The case 1 < a < 2). Our method can also deal with 1 < a < 2,
for which global existence has already been proved in [13]. In fact it would be
possible to extend accordingly Proposition 2.1 with «/2 derivatives (o > 1) as
follows:

/pp+1(x) dr < pr/sz M&FP=B) g p .

R - Ho/? ’ pta—1

Notice that our strateqy requires weaker hypotheses on the initial data (in par-
ticular regularizing effects can be proved as before).

Remark 2.5 (Intermediate asymptotics when o« = 1). It is known that for
the classical two-dimensional Keller-Segel system the cell density in space/time
rescaled variables converges to a self-similar profile when mass is subcritical
[4]. The proof of this fact strongly uses the energy structure. This question
is open for the one-dimensional Keller-Segel system with half-diffusion under
consideration here.
Recall that when only diffusion occurs (without a chemotactic coupling), such a
self-similar decay holds true. This can be seen via the following argumentation
in Fourier variables.

First rescale time and space: u(t,y) = (1 + t)p(t, (1 + t)y), where 7 =
log(1 +t). The new equation reads:

dru(T,y) = —Au(t,y) + 9, (yu(T,y)) .

This writes in Fourier variable as follows:

87"0'(7—7 g) = _|€|’0'(Ta E) - §8§’0,(T, g) .

Or, equivalently,

Oy (a(r, &) exp([€])) + £0¢ (a(r, §) exp([€])) = 0.

As a consequence, u(T,&)exp(|¢]) can be integrated along the characteristics
outgoing from 0, where a(7,0) = M. This shows that a(T,&) exp(|¢]) converges
to M locally in frequency. Therefore, u(t,y)/M converges to the inverse Fourier
transform of exp(—|€|), which is nothing but the Cauchy density.

Numerical simulations clearly indicate that such a statement is expected to
hold true when a chemotactic contribution is added to the diffusion equation and
mass is subcritical (see Fig. 1).

3 Blow-up: proof of Theorem 2
We focus in this section on the regime « < 1, for which blow-up may occur. We

exhibit a criterion involving the mass and the first moment of the initial cell
density, in the same spirit as [10].

11
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Figure 1: Numerical simulation of the one-dimensional Keller Segel system (1.2)
in rescaled variables with o = 1. The solution converges to a self-similar profile
(in red). Here mass is subcritical as opposed to Fig. 2.

Testing the fractional diffusion Keller-Segel against an appropriate function
¢ (regular with constant behaviour at infinity to be precised below) writes after
symmetrization:

& Lottt = S [ ——olo) - ) o(t.0) = plt. ) dey

—i //MR sgn(z —y)(¢'(x) — ¢’ (v))p(t, x)p(t, y) dxdy .
(3.1)

We introduce a C*°, evenly increasing, auxiliary function ¢ satisfying: ¢(x) =
|| for |x| < 1/2 and ¢(x) = 1 for |z| > 1. We claim that the fractional Laplacian
of ¢ is a bounded function. Indeed we split the integral into two parts:

N ¢z +h) — d(x)
—A¢(x) = ¢ |h|1+°‘ dh ,
. 6 + ) — 6(2) 6z + ) — 6(2)
A < d dh
| ¢“”‘ﬂkg e y+ﬁm2 [T
|¢|W1,oo 2
dh ———dh
Sﬁk2|wl +A»ﬂM”a
<|@lwr.=C(a) + C(a). (3.2)

Proof of Theorem 2. The proof begins with testing the Keller-Segel (3.1) against

12



the scaled function ¢y (z) = ¢p(Ax)/A:

%/R%(x)p(t,x) dfc:/R(—A“%(x))p(t,x)dx

1

! /Rstgn(x —y) (P\(x) — &\(v)) p(t, 2)p(t, y) dxdy . (3.3)

Thanks to a scaling argument and (3.2), we have the following estimate:
A%pa(2)] < CXT1.
As a consequence we have for the first contribution in (3.3):

/ (=A% (2))p(t, 2)dx
R

On the other hand, we can write:

< CMNL,

if
o(x) = [2] + R(x). R<x>={?_|x|, i

#(2) = sen(z) + R (2).
We clearly have |R'(z)| < C¢(x), hence:
R(\a)| < o) = Chia ().

Therefore, we have for the second contribution in (3.3):

- / sgn(e — y) (#5 () — G (1)) p(t,0)p(t, y) dady
RxR
_ _i /RX]R sgn(z — y) (sgn(Az) —sgn(A\y)) p(t, z)p(t,y) dedy
_% /R sn(e = )R (a)p(a)o(y) dudy
1
< -5 /{(%y):w@} p(t,x)p(t,y) dedy + CM)\/Réf’)\(x)P(ta z)dz .

Observe that the symmetry assumption on the cell density p(t,z) implies the
crucial point:

/{(wvy):w@} p(t, )p(t,y) dvdy = 2 (/KO p(t, ) dw) (/wop(t,y) dy)

M2
T2
We conclude the above estimates on the ‘corrected’ first moment Iy(t) :=

[ éx(@)plt, x)da:

2
% < CMA + CAIL(t) — MT + CAMI,(t)
< % (CXY = AM) + C (X\* + AM) I, (t) . (3.4)
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cell density (log scale)

Figure 2: Numerical simulation of the one-dimensional Keller Segel system (1.2)
with o = 1 for large mass (cell density is plotted in logarithmic scale). The
solution clearly blows-up (final profile is plotted in red).

We now choose A such that the terms \* and AM are well-balanced, and such
that CA* — AM = —AM/2, which is a negative quantity. This leads to A\ =
(/M) =) for some constant p depending on a and the specific choice of
the auxiliary function ¢. Inequality (3.4) rewrites:

I (¢)

dly - M?
Mo/(1—a)”

A L o/
@ =g T

To finish the argumentation, let us observe that imposing a condition of the

form

Ma/(l_a)lk (0) < CM(Q—O‘)/(l_OC) , (35)

yields that the quantity I, must vanish in finite time, which is an obstruction
to global existence.
Observe finally that I (0) < [, [#]po(2)dx, hence (3.5) is satisfied if [, |z[po(2)da
is sufficiently small. This completes the proof of Theorem 2.
O

Remark 3.1 (On the constants as « " 1). Tracking carefully the constants
in the preceding proof, it turns out that p scales like 1/(1 — «)) whereas other
constants are indeed of order 1. Thus criterion (3.5) rewrites:

L)' < CY (1 —a)*ME=),

This clearly shows that the previous argument is not expected to be extended to
the case a = 1. However numerical simulations clearly show that a critical mass
is likely to occur when o =1 (see Fig. 2).
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Remark 3.2 (Including degradation of the chemical potential). If we replace
the Poisson equation for the chemical potential (1.4) by

o ta) = [ By —uplt)dy, Byw) = —gesp(—yAla),  (39)

we end up with the following criterion which ensures blow-up of the solution in
finite time:

([ el d) < Kafoy)M*, (3.7)

where Ka(a,7) is given below (3.9). We argue as follows (omitting the index
for the sake of clarity): the new choice for c,(t,z) induces a correction on the
computation above (3.4):

dI,\
dt — 4)\
v / (1= ) s — ) (6 O) = 6/ O) ot 2)pt. ) dady.
(3.8)

M (OX ZAM) +C (X + \M) I (1)

We can assume furthermore that the test function ¢(x) satisfies the following
properties: i) ¢ is symmetric, nondecreasing and sub-additive, and |¢|y1.0 <1
it) Ve € R, 1 —exp(—|z|) < ¢(z). Then, the last contribution can be estimated
as follows:

A M oxe ZAMY + C O + M) T (8)

dt = 4x A

1
5[] @A+ olT) . a)ptt.) dudy
X

< % (CA* = AM) + C (A\* + AM) I\ (t) + A\MI\(t), if V7 < A

As a consequence we obtain a contradiction if the first moment is initially
smaller than

AC-a)/(ma) o f L= CATE Al (3.9)
A AANCAL+O) T T
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