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Abstract.

We answer partially the question of global existence for a chemotaxis model involving
two chemical species: a chemo-attractant and a stimulant. We introduce a Lyapunov
function for this system and we show that it is non-decreasing assuming a family of
threshold conditions.

AMS subject classification (2000): 35B45; 35Q80; 92C17.

Key words: Chemotaxis, bacterial motility, global existence, Lyapunov function.

1 Introduction – Statement of the problem

In the early 70’s Keller and Segel have published seminal papers about the
modeling of cell populations movements [21, 20] (see also [27]). They describe
how chemotaxis may explain several features of cell movement. Chemotaxis
means movement in response to a chemical cue, say for instance food, poison or
any chemical signal. Various examples of such oriented movement can be found
in bacterial motility (Escherichia Coli [2]), or in collective cell organization (the
slime mold amoebae Dictyostelium discoideum and the cAMP molecule [17]).
Chemotaxis is also involved, with more specific ingredients, in modelisation of
pattern formation [28], vascular network formation [14, 29, 11] and angiogenesis
[22, 25]. From a mathematical point of view, the interest of the Keller-Segel
system stems from its nonlinear conservative structure which allows for blow-
up, critical spaces, traveling waves...

In this paper we will focus on some variant of the classical Patlak, Keller and
Segel model (see below for a brief overview of this model). It has been introduced
by Brenner et al., and promoted by Tyson et al. [6, 30] (see also [24]) in order
to explain complex bacterial pattern formation in semi-solid medium [4]. The
main additional feature is a second reactant, namely the stimulant f which is
consumed by the cells n to produce c. We present here a simplified version
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which captures in a certain sense the main difficulties brought by the additional
equation. Namely, we consider the system

(1.1)


∂n

∂t
= ∆n− χ∇ · (n∇c) t ≥ 0 , x ∈ Ω ⊂ R2,

−∆c = nf− < nf >,

∂f

∂t
= −nf.

We complete this system with initial conditions n0, c0, f0. Here Ω is a bounded
domain, and we consider zero-flux boundary conditions for both n and c.

The Patlak, Keller and Segel (PKS) model. The PKS system consists
of two coupled equations for the evolution of the cell density n(t, x) and the
chemoattractant c(t, x) respectively. Cell density is governed by a drift-diffusion
equation

(1.2)
∂n

∂t
+∇ ·

(
−∇n + χn∇c

)
= 0 , t ≥ 0 , x ∈ Ω ⊂ R2,

and the concentration of chemical satisfies a reaction-diffusion equation wich
reads

(1.3) −∆c = n− < n >,

in the limiting case of fast diffusion [18]. Here < n > denotes the mean value of
n over the domain Ω. Boundary conditions are zero-flux. The key parameters
are χ the chemotactic sensitivity – which is assumed to be constant here – and
M the total mass of cells – which is formally conserved. The general behaviour
of this system is now quite well understood, and main results are summarized
in the following theorem [13, 5, 15, 10].

Theorem 1.1 (Global existence for the PKS model). Assume Ω is
a regular bounded domain and n0 ∈ L∞(Ω). If χM < 4π solutions are global
in time. If χM > 8π and the second moment of n0 is large enough then the
solution blows-up in finite time.

If Ω is the whole space R2 and both n0

(
| log n0|+(1+|x|2)

)
∈ L1, then solutions

are global in time if χM < 8π, or blow up in finite time if χM > 8π.
The existence parts of these results are based on two different strategies. The

common feature is to prove equi-integrability for the cell density n thanks to a
priori estimates. These a priori estimates are of two types. Given a functional
Φ growing faster than linearly (typically Φ(u) = u log u or Φ(u) = up), a di-
rect computation of d

dt

∫
Φ(n) dx gives two terms of opposite signs. In general

a Gagliardo-Nirenberg-Sobolev (GNS) inequality can be used to estimate the
balance between the diffusion and the chemotactic contributions. The threshold
condition coming from GNS inequality has the right homogeneity, but it is not
optimal. On the other hand, the free energy for system (1.2), (1.3) writes

E(t) =
∫

n log n− χ

2

∫
cn.
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It is non increasing and therefore it is possible to estimate
∫

n log n if the two
opposite contributions can be compared to each other, by means of fine in-
equalities (namely Trudinger-Moser or logarithmic Hardy-Littlewood-Sobolev
inequalities).

There are several shortcomings to model (1.2), (1.3). Several biochemistry
aspects are not taken into account, as well the type of physical support for the
experiments [24, Vol. II chap. 5]. Also concentrations points do not move
in usual numerical simulations [23] by opposition to experimental observations
or numerical simulations of (1.1) as shown in Figure 1.1. The formulas for the
aggregate motion in [31] confirm that different regularizations of (1.2), (1.3) give
different dynamics.

Figure 1.1: Motion of three aggregates in an extended Keller-Segel system as (1.1).

Courtesy of A. Marrocco (work in preparation).

Statement of the main result. As we mentioned above, a natural ques-
tion arising among various studies of PKS models is whether solution blows up
or not in finite time. Various modifications of the classical model (1.2), (1.3)
have already been proposed to prevent formation of singularities. For instance,
Kowalczyk analyzed a system including nonlinear cell diffusion [19]. On the
other side Painter and Hillen considered a saturating effect on the chemotactic
sensitivity [16]: χ(n) vanishes for large n (see also [7] for a discussion concerning
these volume effects). In the following we raise the question of any blow-up for
the model (1.1), a question that we only partially answer here. Notice that (1.1)
can be considered as an extension of some system arising to describe angiogen-
esis that has been studied in [9], and for which the question of blow up is also
open.

First let us present a method, directly inspired from [18]. It is based on the
following Gagliardo-Nirenberg-Sobolev inequality [12, 26],

(1.4)
∫

n2 ≤ Cgns

∫
n

∫
|∇
√

n|2.
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This estimation appears naturally when computing the evolution of
∫

n log n.

d

dt

∫
n log n ≤ −4

∫
|∇
√

n|2 + χ

∫
n2f

≤ −4
∫
|∇
√

n|2 + χ‖f‖∞
∫

n2

≤
(
− 4 + χ‖f‖∞MCgns

) ∫
|∇
√

n|2.

Therefore, using this only ingredient, we can hope to conclude only under the
condition

(1.5) χ‖f0‖∞M < C∗.

This condition is not satisfactory in the sense that it doesn’t bring anything new
by comparison to the classical Keller and Segel model, and because it doesn’t
capture the fine coupling with the additional equation ∂tf = −nf .

Unfortunately we know no energy structure, wich makes this model dramati-
cally different from (1.2), (1.3). However we derive in this paper a new class of
conditions involving the parameters χM and ‖f0‖∞ which guarantees a priori
estimates.

Theorem 1.2 (A priori estimates for the extended PKS model). Let
Ω be a bounded domain. It exists a family of conditions

(1.6) χ‖f0‖∞M1−λ ≤ Cλ,

indexed by λ ∈ [0, 1
4 ] such that: if at least one of these conditions is fulfilled,

then the solution of (1.1) is a priori globally equi-integrable.
From now on our strategy consists in studying the variations of a well-chosen

functionalW combining with homogeneity the standard energy of PKS equations
and that of the angiogenesis model used in [9], namely

W(t) =
∫

n log n + b

∫
nfγ +

a

2

∫
|∇fδ|2,

where a, b are some constants depending on the parameters, and δ, γ are expo-
nents without homogeneity.

At the end of this contribution we are concerned with the problem of global
existence for the system (1.1), and we provide some discussion how to prove it
based on theorem 1.2.

Theorem 1.3 (Global existence for the extended model). Assume
condition 1.6, n0 ∈ L1 ∩ Lp for some p > 1, and W(0) is finite, then there is a
unique weak solution to (1.1) that satisfies W(t) ≤ W(0) and n ∈ L∞

(
R+;L1 ∩

Lp).
In section 2 we present some regularization estimates which justify the choice

of the functional W. In sections 3 and 4 we drive the calculation leading to
d
dtW ≤ 0, and hence we prove theorem 1.2. Finally we prove theorem 1.3 in
section 5.
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2 Preliminaries: global existence for the chemotaxis and the angio-
genesis models

In this section we review some basics of the existence theorems for the chemo-
taxis and the angiogenesis models respectively. The energy structure for the first
one has already been described in introduction.

2.1 The chemotaxis model

We first highlight the following statement

(2.1)
d

dt

∫
np + 2

p− 1
p

∫
|∇np/2|2 ≤ χ2p(p− 1)

2
‖∇c‖2L∞t,x

∫
np,

which comes directly from (1.2). It means that some estimate on ∇c cancels
the nonlinearity and provide any Lp bound, p < ∞, for the cell density n.
Unfortunately this ∇c estimate is not available e.g., and the usual way is to start
from equi-integrability, namely

∫
n| log n| dx ≤ C, which avoids the formation of

Dirac masses; then to propagate Lp bounds thanks to the following computation

d

dt

∫
(n− k)p

+ + 4
p− 1

p

∫
|∇(n− k)p/2

+ |2

≤ χ(p− 1)
∫

(n− k)p+1
+ + O

( ∫
(n− k)p

+

)
.

(2.2)

Indeed using the Gagliardo-Nirenberg-Sobolev inequality∫
(n− k)p+1

+ dx ≤ Cgns(p)
∫
|∇(n− k)p/2

+ |2 dx

∫
(n− k)+ dx,

and equi-integrability yelds the inequality

d

dt

∫
(n− k)p

+ ≤ O
( ∫

(n− k)p
+

)
,

which ensures that ‖n‖Lp is controlled [18, 9]. This argumentation remains valid
in the extended system (1.1), so we are to prove equi-integrability only.

2.2 The angiogenesis model

Following [1] a simplified model for angiogenesis has been proposed in [8]. It
reads

(2.3)


∂n

∂t
= ∆n− χ∇ · (n∇f) t ≥ 0 , x ∈ Ω ⊂ R2,

∂f

∂t
= −nf,

where n denotes the endothelial cell density, and f denotes some chemical angio-
genic factor, secreted by a tumor for instance. Boundary conditions are zero-flux
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as well. Contrary to the chemotactic model PKS, this system admits a positive
energy structure d

dtE ≤ 0 with

E(t) =
∫

n log n + 2χ

∫
|∇

√
f |2.

This energy structure provides us with global existence of weak solutions. It is
also possible to derive Lp bounds for the cell density similarly to (2.2) under
smallness assumptions, but we won’t enter into details here (see [9]).

3 Outline of the calculation

We consider a combination of the following type [13]

(3.1) W(t) =
∫

n log n + b

∫
nfγ +

a

2

∫
|∇fγ−1|2.

Our goal is to show that it is decreasing for suitable values of a, b, which are
proved to exist whenever (χ‖f0‖∞)γMγ−1 ≤ Cγ , γ ≥ 4. Note that we will
keep γ along the paper, and we will introduce λ = γ−1 in conclusion. We first

compute each term of the derivative
d

dt
W.

d

dt

∫
n log n ≤ −4

∫
|∇
√

n|2 + χ

∫
n2f,(3.2)

b
d

dt

∫
nfγ = −b

∫
∇n · ∇fγ + χb

∫
n∇c · ∇fγ − γb

∫
n2fγ ,(3.3)

a

2
d

dt

∫
|∇fγ−1|2 = −γ − 1

2
a

∫
∇n · ∇f2γ−2 − (γ − 1)a

∫
n|∇fγ−1|2.(3.4)

In order to compensate the bad influence of the positive (resp. no-sign) terms
in the right-hand side of (3.2) (resp. (3.3), (3.4)), we plan to associate them
with the negative ones in two ways. The first group is made of

(3.5) −4
∫
|∇
√

n|2−


b

∫
∇n · ∇fγ

γ − 1
2

a

∫
∇n · ∇f2γ−2

−(γ−1)a
∫

n|∇fγ−1|2 ≤ 0.

The sign of this expression will be determined thanks to a recombination into a
remarkable square. The second group is made of

χ

∫
n2f − γb

∫
n2fγ .

The non-friendly term χb
∫

n∇c·∇fγ plays an ambivalent role in this description,
because it gives contributions to each group.
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4 Details of the estimation

Our main objective is to preserve the homogeneity along computations. For
this purpose we frequently introduce some homogeneity constant which has to
be fixed later on.

4.1 The first group (3.5)

We force a remarkable square to appear thanks to the square terms. We are
able to upperbound (3.5) by

−4
∫
|∇
√

n|2 +2b
γ

γ − 1
‖f‖∞

∫
|∇
√

n| · |
√

n∇fγ−1|−(γ−1)a
∫

n|∇fγ−1|2 ≤ 0.

So a first condition concerning the homogeneity of a and b comes naturally for
this expression to be non-positive: the discriminant is non-positive;

(4.1)
(

2b‖f(t)‖∞
γ

γ − 1

)2

− 16a(γ − 1) ≤ 0.

More precisely we choose the constants a, b so that

(4.2)
(

2b‖f0‖∞
γ

γ − 1

)2

= a(γ − 1), γ > 1.

The same computation arises for the other expression of (3.5), namely

−4
∫
|∇
√

n|2+2(γ−1)a
∫
|f |γ−1|∇

√
n||
√

n∇fγ−1|−(γ−1)a
∫

n|∇fγ−1|2 ≤ 0.

We get a similar condition on the discriminant of this expression, and we choose
exactly the constant a to be

(4.3) 4(γ − 1)a‖f0‖2γ−2
∞ = 1,

and the combination of (4.2) and (4.3) gives in addition

(4.4) 4
(

b‖f0‖γ
∞

γ

γ − 1

)
= 1.

In this subsection we have hidden the two terms b∇n · ∇fγ and γ−1
2 a

∫
∇n ·

∇f2γ−2 in the negative contributions of

−2
∫
|∇
√

n|2 and − 1
2
(γ − 1)a

∫
n|∇fγ−1|2.



8 V. CALVEZ AND B. PERTHAME

4.2 Estimating the ambivalent term
∫

n∇c · ∇fγ

We can combine this no-sign term in a general way

(4.5)

∫
n|∇c · ∇fγ | =

γ

γ − 1

∫
nf |∇c · ∇fγ−1|,

≤
(

γ

γ − 1

)2
K

2

∫
n|∇fγ−1|2 +

1
2K

∫
nf2|∇c|2,

with a homogeneity constant K which has to be fixed. We would like to associate
the first right-hand side term with −(γ − 1)a

∫
n|∇fγ−1|2, that is

χ
K

2
b

(
γ

γ − 1

)2 ∫
n|∇fγ−1|2 − 1

2
a(γ − 1)

∫
n|∇fγ−1|2 ≤ 0.

In fact we choose

(4.6) χb

(
γ

γ − 1

)2

K = (γ − 1)a, hence 4χb

(
γ

γ − 1

)2

‖f0‖2(γ−1)
∞ K = 1,

(after combination with (4.3)). The second right-hand side term of (4.5) will be
eliminated thanks to the combination of a Sobolev inequality

(4.7) ‖∇c‖44 ≤ CS‖nf‖44/3,

and a Gagliardo-Nirenberg-Sobolev inequality(∫
n4/3

)3

≤ CgnsM
3

∫
|∇
√

n|2.

Notice that this constant Cgns differs from (1.4): we just want to mention the
origin of the constant in the following. It comes

(4.8)
∫

nf2|∇c|2 ≤ L

2

∫
n2f4 +

1
2L

∫
|∇c|4,

and also

(4.9)
∫
|∇c|4 ≤ C∗‖f(t)‖4∞M3

∫
|∇
√

n|2,

where C∗ = CSCgns. To compare (4.9) with our available negative term−4
∫
|∇
√

n|2
from (3.2), parameters should fulfill

χbK−1L−1‖f‖4∞M3C∗ ≤ 16.

We choose precisely

(4.10) χbK−1L−1‖f0‖4∞M3C∗ = 4.
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In this subsection we have consumed

−
∫
|∇
√

n|2 and − 1
2
(γ − 1)a

∫
n|∇fγ−1|2.

Finally we have to deal with the last remaining positive terms, namely
∫

n2f in
(3.2) and

∫
n2f4 in (4.8).

At this stage we leave chosen the constants: a by (4.3), b by (4.4), K by (4.6),
and L by (4.10).

4.3 The second group

In order to eliminate the two terms
∫

n2f and
∫

n2f4, we of course associate
them with

∫
n2fγ . That is why we impose γ ≥ 4 in theorem 1.2. We use the

following majorations which distinguish between high and low values of f .

Y ≤ R−1C(γ) + Rγ−1Y γ ,

X4 ≤ S−4C(ν) + Sγ−4Xγ , 4ν = γ,

with the constant E(ν) = C(ν)ν−1 = (ν−1)(ν−1)

νν . Then for each term
∫

n2f4 and∫
n2f we get two new terms involving

∫
n2 and

∫
n2fγ :

χ

∫
n2f ≤ χC(γ)R−1

∫
n2 + χRγ−1

∫
n2fγ ,

χb
K−1L

4

∫
n2f4 ≤ χb

K−1L

4
S−4C(ν)

∫
n2 + χb

K−1L

4
Sγ−4

∫
n2fγ .

At this stage we can use the first Gagliardo-Nirenberg-Sobolev inequality (1.4)
to estimate

∫
n2, and we deduce the following conditions

(4.11) 2χC(γ)R−1MCgns = 1, 2χb
K−1L

4
S−4C(ν)MCgns = 1.

On the other hand we look for a cancellation of the last positive remaining terms
involving both

∫
n2f , and therefore we impose

(4.12) 2χRγ−1 ≤ γb, 2χb
K−1L

4
Sγ−4 ≤ γb.

Finally we have determined all the homogeneity constants introduced in the
calculations, and we can restate (4.11), (4.12) as following:

(4.13) 2χ (2χC(γ)CgnsM)γ−1 ≤ γb,

(4.14) χbK−1L
(
χbK−1LC(ν)CgnsM

)ν−1 ≤ 2νγb, ν =
γ

4
,

and we recall that b, K, L are already fixed. Notice that (4.13) and (4.14) are
redundent thanks to the exponents involved.
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4.4 Consequences of the homogeneity relations

Replacing b, K and L by their values (4.4), (4.6), (4.10), and because we have
set γ = 4ν, we find that the two redundent conditions (4.13) and (4.14) can
summarize simply into the single inequality

(4.15) E(γ)χγ‖f‖γ
∞Mγ−1 ≤ Cγ

γ ,

where the constants Cγ are uniformly bounded. Consequently, taking the γ-root
of (4.15) and because

E(γ)1/γ =
(1− 1/γ)1−1/γ

(1/γ)1/γ

is bounded for γ ≥ 4, we obtain the final condition, announced in theorem 1.2.

χ‖f0‖∞M1−λ ≤ Cλ, λ ∈ [0,
1
4
],

with a bounded family of constants (Cλ). Note that the special case λ = 0
corresponds to estimation (1.5).

5 Global existence for the system (1.1)

We prove theorem 1.3 and we proceed as usually in three steps.

Step 1. Regularization of the system. We propose to replace the second
equation with

(5.1) −∆c = TK(nf)− < TK(nf) >,

where TK(u) = min(u, K). The corresponding system together with regularized
initial conditions is solved using Banach fixed point theorem. The truncature
(5.1) ensures that the solution (nK , cK , fK) is global in time, because it avoids
formation of any singularity; see section 2.1, and notice that TK(nf) is a priori
bounded in L1 ∩ L∞, therefore ∇c ∈ W 1,∞ by Young’s inequality.

Step 2. Estimates for the regularized system. A priori estimates which
have been proved formally in section 4 can be adapted to the regularized system
with minor modifications. First we compute the time derivative of W related to
the regularized model.

d

dt

∫
n log n ≤ −4

∫
|∇
√

n|2 + χ

∫
nTK(nf),(5.2)

b
d

dt

∫
nfγ = −b

∫
∇n · ∇fγ + χb

∫
n∇c · ∇fγ − γb

∫
n2fγ ,(5.3)

a

2
d

dt

∫
|∇fγ−1|2 = −γ − 1

2
a

∫
∇n · ∇f2γ−2 − (γ − 1)a

∫
n|∇fγ−1|2.(5.4)

Only the first part (5.2) is affected by the truncature. Consequently we are able
to follow the consecutive steps of section 4, because the negative terms in (5.2),
(5.3) and (5.4) necessary for cancellations remain unchanged.
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Step 3. Propagation of regularity. Finally we can use the upperbound
of

∫
n log n to prove Lp bounds for the cell density (see [18, 9] and section 2).

These estimations provide also time compactness in terms of∫ ∞

0

‖∇np/2‖2L2(Ω) ≤ C(‖n0‖Lp(Ω)).

Passing to the limit, the main difficulty lies in the nonlinear term ∇ · (n∇c)
and we need some compactness. It is provided by the Lions–Aubin lemma [3]
which claims that the embedding{

u ∈ L2
(
0, T ;H1

)
, ∂tu ∈ L2

(
0, T ;L2

)}
↪→ C

(
0, T ;L2

)
is compact.

6 Conclusion

We have studied a priori bounds (and existence) for the variant (1.1) of the
well-known Keller and Segel model. Because of the lack of energy structure we
have introduced a new type of functional W which is decreasing under some
condition involving the parameters. These new considerations may be extended
to new kinds of models where several extracellular products are involved (angio-
genesis for instance).

We have been able to find a new threshold condition (1.6) ensuring that∫
n log n remains bounded and thus that n is equi-integrable. But we have

no certitude whether solutions may blow up or not above these thresholds. In
fact we have not shown any existence of a blowing-up solution for this system,
and the mechanism for such a blow-up is certainly more complex than for the
Keller and Segel model.
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