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Abstract

The goal of this paper is to exhibit a critical mass phenomenon occuring in a model for cell self-organization via
chemotaxis. The very well known dichotomy arising in the behavior of the macroscopic Keller-Segel system is derived at
the kinetic level, being closer to microscopic features. Indeed, under the assumption of spherical symmetry, we prove that
solutions with initial data of large mass blow-up in finite time, whereas solutions with initial data of small mass do not.
Blow-up is the consequence of a momentum computation and the existence part is derived from a comparison argument.
Spherical symmetry is crucial within the two approaches. We also briefly investigate the drift-diffusion limit of such a
kinetic model. We recover partially at the limit the Keller-Segel criterion for blow-up, thus arguing in favour of a global
link between the two models.

1 Introduction

In this paper we aim to exhibit a blow-up versus global existence phenomenon for a kinetic model describing collective motion
of cells in two dimensions of space. The so-called Othmer-Dunbar-Alt system [31, 33] reads as follows,

∂tf + v · ∇xf =
∫
v′∈V

T [S](t, x, v, v′)f(t, x, v′) dv′ − λ[S](t, x, v)f(t, x, v) , v ∈ V ⊂ R2 , x ∈ R2 , t > 0 ,

−∆S + αS = ρ(t, x) =
∫
v∈V

f(t, x, v) dv ,
(1.1)

where f(t, x, v) denotes the cellular density in position×velocity space, and S(t, x) is the concentration of the chemoattractant.
The chemical degradation rate α is supposed to be constant and nonnegative (both cases α = 0 and α > 0 will be investigated
below). The velocity set is assumed to be bounded, and for simplicity we take V = B(0, R) throughout this paper.

The turning kernel T [S](t, x, v, v′) ≥ 0 denotes the probability of transition between velocities v′ → v at position x and
time t, and λ[S] =

∫
v′∈V T [S](t, x, v′, v) dv′ is the intensity of this Poisson process. The influence of the chemical field S is

highlighted in the notation T [S]. We make the particular choice

T [S](t, x, v, v′) = χ0

(
v · ∇S(t, x)

)
+
, (1.2)

with constant χ0 > 0, that is to say cells choose only favorable directions when they reorientate, and they align more likely
with the gradient of the chemical. This mechanism is actually not well-suited for describing accurately bacterial motion
like the ’run and tumble’ process performed by the bacteria Escherichia coli [15]. However, this fits well with motion of
bigger and more complex cells capable of sensing a space gradient of the chemical and to orientate accordingly (amoeboid or
mesenchymal motion [16]). More complex kinetic models involving saturation effects or interactions between cells and the
surrounding tissue have been investigated respectively in [11, 23].

The initial data f0 belongs to L1(R2 × V ) (more appropriate assumptions on f0 will be stated within Assumption A1,
Theorems 2 and 4). Observe that the mass of cells is formally conserved in time:∫∫

R2×V
f(t, x, v) dvdx =

∫∫
R2×V

f0(x, v) dvdx .

This parameter will play a key role in the sequel (the so-called critical mass phenomenon).
We restrict ourselves to the two-dimensional case to capture this critical mass phenomenon (as it is for the Keller-Segel

system, see Section 1.3). In higher dimension of space we expect that the L1 space is no longer critical, like in the analysis of
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Keller-Segel (see [13] or [4] for similar considerations at the kinetic level). There are several strategies to mimic this critical
mass phenomenon in any dimension of space (the dimension one is particularly relevant for numerical purposes). One choice
would be to replace the Poisson equation for the chemical potential in (1.1) by a convolution equation with a logarithmic
kernel [7].

1.1 Statement of the main results (blow-up vs. global existence)

The kinetic model under consideration in this work can be written more precisely as follows:{
∂tf + v · ∇xf = χ0(v · ∇S)+ρ− χ0ω|∇S|f , v ∈ V = B(0, R) , x ∈ R2 , t > 0 ,

−∆S + αS = ρ(t, x) .
(1.3)

where ω =
∫
v′∈V (v′ · ∇S/|∇S|)+ dv′ = 2R3/3 (see Lemma 13 below, the precise value of ω does not play an important role

in the sequel).

Assumption A1 (Initial datum). Assume that the initial density f0(x, v) ≥ 0 belongs to L1 ∩ L∞(R2 × V ). Assume in
addition that f0 has spherical symmetry: for any rotation Θ, f0(Θx,Θv) = f0(x, v). We denote by M the total mass:

M =
∫∫

R2×V
f0(x, v) dvdx .

This assumption ensures that the system (1.3) has a unique solution, which remains spherically symmetric during its life
span (see Section 2 and Appendix).

Definition 1 (Blow-up in the context of kinetic chemotaxis). A solution of (1.3) is said to blow-up if after some time
(possibly infinite), f(t, x, v) exits LpxL

q
v for all exponents p and q such that

2 < p , 1 < q , 0 ≤ 1
q
− 1
p
<

1
2
.

This particular choice of exponents is clearly related to the dispersion Lemma 6. In fact LpxL
q
v turns out to be a natural space

for existence theory associated to (1.3) (see Appendix and [5]).

Theorem 2 (Blow-up for large mass under spherical symmetry, α = 0). Assume that f0 satisfies Assumption A1 and has a
finite second moment w.r.t. the space variable x. Assume that the mass is large enough:

M >
32π
χ0|V |

. (1.4)

Then the solution of (1.3) with α = 0 blows-up in finite time.

Corollary 3 (Blow-up for large mass under spherical symmetry, α > 0). Assume that f0 satisfies Assumption A1 and has a
finite second moment w.r.t. the space variable x. Assume that the mass is large enough (1.4). Assume in addition that the
following condition is fulfilled initially,

α

∫∫
R2×V

|x|2ρ0(x) dx < C(χ0,M, |V |) , (1.5)

where C(χ0,M, |V |) is an explicit (but heavy) constant vanishing when the case of equality is reached in (1.4). Then the
solution of (1.3) with α > 0 blows-up in finite time.

Before we state our next result we introduce some notation. For any exponent 0 < γ < 1 define:

Ω(γ) = 1 +
1
π

∫ π/2

θ=−π/2
|sin θ|−γ dθ . (1.6)

Theorem 4 (Global existence for small mass under spherical symmetry, α = 0). Assume that f0 satisfies Assumption A1
and lies below k0|x|−γ for some 0 < γ < 1 and k0 > 0. Assume in addition that the mass is small enough:

M ≤ 4πγ
χ0|V |Ω(γ)

. (1.7)

Then the solution of (1.3) exists globally in time.
More precisely we obtain that for all time t > 0 the following pointwise estimate holds true:

f(t, x, v) ≤ k0

∣∣∣∣∣x−
(
v

|v|
· x
)

+

v

|v|

∣∣∣∣∣
−γ

.

This implies that the solution does not blow-up in infinite time either.
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Corollary 5 (Simplified criterion for global existence, α = 0). Assume that f0 satisfies Assumption A1 and additionally that
f0 ∈ C0

c (R2). There exists a threshold M∗(χ0, |V |) such that if M ≤M∗ then the solution of (1.3) exists globally in time.

The two theorems above and their corollaries require a few comments.

(i) The meaning of spherically symmetric solutions in the context of kinetic models is given in the Appendix.

(ii) The case of the velocity space being V = S(0, R) is also investigated as a direct adaptation of Theorem 2 (see page 10).
We obtain that blow-up occurs if the criterion (1.4) is replaced with: M > (16π/χ0|V |). In particular, the velocities
of cells are not likely to converge to zero in the general case when blow-up occurs (both density and velocity collapse)
and blow-up can happen even if the set of admissible velocities is bounded from below. In this situation, the tumbling
frequency dramatically increases in the neighbourhood of the blow-up location.

(iii) Note that Theorem 2 is included in its Corollary 3 when α → 0. However, we state first Theorem 2 for the sake of
coherence (the Corollary can be thought of being a perturbation result for α > 0).

(iv) We shall derive in Section 3 a weaker criterion for blow-up when α > 0, involving the initial first and second moments,
and the initial current (3.13). However we opted for a simplified presentation in Corollary 3 involving the second
moment only.

(v) Theorem 4 and its corollary 5 are concerned with α = 0, but the case α > 0 can be proven similarly.

(vi) In Theorem 4, the assumption f0(x, v) ≤ k0|x|−γ is not very restrictive, because the tail |x|−γ is not integrable at
infinity.

(vii) We might have expected 0 < γ < 2 instead of 0 < γ < 1 because we are in dimension 2, and the natural space for
solutions here is L1(R2 × V ). However it appears in (1.6) that γ < 1 is a crucial condition that we are not able to
overcome (it underlies the fact that our reference function k(x, v) we are comparing with in Section 4 is not integrable
with respect to velocity if γ ≥ 1).

(viii) The continuous function γ/Ω(γ) goes to zero both for γ → 0 and γ → 1. Therefore there is a best compromise γ∗

which maximises the condition (1.7): M ≤ M∗ = 2γ∗/(χ0|V |Ω(γ∗)). However in this paper we keep general γ for the
sake of clarity. Corollary 5 is nothing but applying Theorem 4 to γ = γ∗ defined as above.

(ix) Notice that the two critical mass thresholds (resp. (1.4) and M∗) do not match, because Ω ≥ 2 ensures M∗ ≤
2πγ∗/(χ0|V |) < 2π/(χ0|V |). Numerically we obtain 4γ∗/Ω(γ∗) ≈ 0.806 < 32!

To the best of our knowledge, few blow-up results have been exhibited for kinetic models. Let us mention primarily
the results by Horst [24], Glassey and Schaeffer [21] respectively for the Vlasov-Poisson and the relativistic Vlasov-Poisson
models in the gravitational (i.e self-attracting) case (see also [20] for a presentation of these results). The derivation of
remarkable identities allow the authors to show blow-up of the solutions having negative energy (resp. in dimension d ≥ 4,
and in dimension d = 3 under spherical symmetry). Recent progress aims to describe precisely the blow-up dynamics using
the Hamiltonian structure and concentration compactness techniques for the Vlasov-Poisson system [27]. Within the context
of chemotaxis models, Chavanis and Sire have derived various virial theorems which share several common features with the
identities derived in this paper [12].

Singularity formation plays a very important role in the kinetic theory of Bose-Einstein condensates, which arise when part
of the particle density concentrates in the same quantum state [17, 34, 28]. The underlying techniques developped there are
quite different however (in fact it would be irrelevant to argue through a vanishing second moment for proving concentration
in this context): the convergence of the solution towards a singular limit (a Dirac mass together with a regular part) at low
temperature for the Boltzmann-Nordheim (resp. Boltzmann-Compton) equation is performed via entropy/entropy dissipation
techniques (see [17, 28] and [34] for an overview of the kinetic theory of Bose-Einstein condensates). Virial identities in the
context of kinetic theory are also developed in cooling processes within the Boltzmann equation where particles are subject
to inelastic collisions [2, 29, 3]. However, the context of the last two examples differs from the situation we are interested in
because concentration occurs in the ‘velocity’ variable whereas for cell chemotaxis and self-attracting Vlasov-Poisson systems
it occurs in the space variable. Consistently enough, the two aforementioned examples deal with homogeneous in space
kinetic equations.

The paper is organized as follows: the next introductory subsections enlarge the picture, and place the above results in
a more general framework. We show the strong continuity between this critical mass phenomenon and previous existence
theorems in kinetic theory for chemotaxis, and we explain the strong links between the current kinetic model, and the
so-called parabolic Keller-Segel model. In Section 2 we briefly state a local existence theorem, which is later given with
full details in Appendix. Section 3 is devoted to the proof of several blow-up results, using a suitable computation for the
second moment (in space) of the cell density. In Section 4 we prove global existence by a comparison argument with a very
specific (and singular) reference function. The Appendix contains a short description of the meaning of spherically symmetric
solutions in the context of kinetic equations, and also a general local existence Proposition (based on dispersive estimates)
to be crucially used in the comparison argument of Section 4.
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1.2 Brief review of context in the light of existence theory

As a by-product of this critical mass phenomenon we can argue that previous existence results in the kinetic theory of
chemotaxis-biased cell motion were not far from being critical. The state of the art of existence results is discussed in the
introduction of [5]. We recall below some of the issues for the sake of putting the results of our paper in context. ¿From
(1.1) two classes of problems emerge depending on the assumption conditioning the turning kernel. The same tool comes out
to be powerful in both situations. As it will be used at few places in the present paper, it is worth recalling the dispersion
lemma [8] which measures the action of the free transport operator on mild LpxL

q
v-norms:

Lemma 6. (Dispersion estimate) Let g0(x, v) ∈ Lq(R2;Lp(R2)) where 1 ≤ q ≤ p ≤ ∞, and let g solve the free transport
equation

∂tg + v · ∇xg = 0 , (1.8)

with initial data g(0, x, v) = g0(x, v). Then

‖g(t)‖Lp
xL

q
v
≤ 1
t2(1/q−1/p)

‖g0‖Lq
xL

p
v
. (1.9)

Strichartz estimates [8] have also been shown to apply succesfully to those run-and-tumble problems (see [4] and Remark
8 below).

Transport-dominating regime. It deals with the case where the turning kernel can be estimated pointwise in terms of
Sobolev norms of the chemical signal. For instance assumptions

T [S](t, x, v, v′) ≤ C‖∇S(t)‖1−νL∞ , 0 < ν ≤ 1 , or T [S](t, x, v, v′) ≤ C‖∇S(t)‖Lr , r <∞ , (1.10)

both lead to global existence of solutions (some superlinear power can in fact be added in the second case, see [5] for details).
When estimating the evolution of LpxL

q
v-norms, the dispersion due to the free transport operator turns out to have a strong

enough effect to counterbalance the aggregation due to the tumble kernel.

Delocalization effects. It deals with the case where the turning kernel is pointwise estimated through some space delo-
calization (volume effects, protrusion sending), for example,

T [S](t, x, v, v′) ≤ C|∇S(t, x+ εv)| , ε > 0. (1.11)

In this case the solution is again proven to be global in time [25]. In [4] a second derivative subject to the same sort of
delocalization can even be added to (1.11).

It is worth noticing that our special choice of turning kernel (1.2) is critical for both assumptions (1.10) and (1.11).

Remark 7 (Dispersion method is borderline.). The turning kernel we are studying in this paper satisfies

T [S](t, x, v, v′) ≤ C ‖∇S(t)‖L∞ . (1.12)

It is natural to ask whether this property alone implies global existence. Indeed, if we work as in [4, 5] we arrive at

‖ρ(t)‖Lp
xL

q
v
≤
∫ t

0

‖∇S(s)‖L∞ ‖ρ(s, x− (t− s)v)‖Lp
xL

q
v
ds .

where 1 ≤ q ≤ p ≤ ∞. By Lemma 6 the right-hand side can be controlled by

C(V )
∫ t

0

1
s2(1/q−1/p)

‖∇S(s)‖L∞ ‖ρ(s)‖Lq ds .

For ρ we can use interpolation: ‖ρ‖Lq ≤ ‖ρ‖1−p
′/q′

L1 ‖ρ‖p
′/q′

Lp . For ∇S we can use the elliptic estimate (see Lemma 11):

‖∇S‖L∞ ≤ C ‖ρ‖
1−p′/2
L1 ‖ρ‖p

′/2
Lp , 2 < p <∞ .

We obtain eventually

‖ρ(t)‖Lp
xL

q
v
≤ C

∫ t

0

1
s2(1/q−1/p)

‖ρ(t− s)‖p
′/2+p′/q′

Lp ds ,

and it is impossible to achieve both 2 (1/q − 1/p) < 1 for integrability near s = 0 and p′/2 + p′/q′ ≤ 1 for applying a global
Gronwall’s lemma.
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Remark 8 (Strichartz method is borderline.). If we are willing to impose a smallness condition we can try to use Strichartz
estimates in the same spirit as [4]. Recall from [8] that if f solves the free transport equation

∂tf + v · ∇xf = g ,

then
‖f‖Lq

tL
p
xLr

v
≤ C0 + C1 ‖g‖Lq′

t L
r
xL

p
v
. (1.13)

where C0 depends only on the initial data and the parameters q, p, r satisfy

1 ≤ r ≤ p ≤ ∞, 2
q

= 2
(

1
r
− 1
p

)
< 1,

1
p

+
1
r
≥ 1 . (1.14)

The borderline case (when the middle condition in (1.14) fails) would correspond to q = 2, p = 2, r = 1,

‖f‖L2
tL

2
xL

1
v
≤ C0 + C1 ‖g‖L2

tL
1
xL

2
v
. (1.15)

We are interested in g = C ‖∇S‖L∞ ρ under the assumption of spherical symmetry. In this special case we have

∀x |∇S(x)| = 1
r

∫ r

0

ρ(λ)λ dλ ≤ 1
r

(∫ r

0

λ dλ

)1/2(∫ r

0

ρ(λ)2λ dλ
)1/2

≤ C ‖ρ‖L2 ,

therefore
‖f‖L2

tL
2
xL

1
v
≤ C0 + C1

∥∥ ‖ρ(t)‖L2 ρ(t, x)
∥∥
L2

tL
1
x

= C0 + C1M ‖f‖L2
tL

2
xL

1
v
. (1.16)

If the mass M was small enough we would be able to bootstrap.
Thus an alternative proof of global existence under small mass and spherical symmetry (much simpler than the one we

develop in Section 4) would rely on a critical Strichartz estimate that we are not currently able to handle.

1.3 A reminder of the classical Keller-Segel in 2D of space

The critical mass phenomenon studied in this paper shares several similarities with the qualitative behaviour of the parabolic
Keller-Segel system in two dimensions of space:{

∂tρ = ∆ρ− χ0∇ · (ρ∇S) , t > 0 , x ∈ R2 ,

−∆S + αS = ρ .
(1.17)

In fact, there is a simple dichotomy: if the mass is below the threshold M < 8π/χ then the solution is global in time
and disperses with the space/time scaling of the linear heat equation; on the other hand, if it is above the same threshold
M > 8π/χ, then the solution blows-up in finite time (in the case α = 0). For blow-up in the case α > 0 one usually adds an
hypothesis close to (1.5) [6]. This critical mass phenomenon was first derived in a bounded domain with radial symmetry
[26, 30]. Energy methods based on ad-hoc functional inequalities (either Trudinger-Moser or Hardy-Littlewood-Sobolev with
a logarithmic kernel) were developed later on [19, 1].

The analogy is not complete however, as can be seen in the details of our proofs. Concerning the blow-up, we have to
differentiate twice in time the second moment as opposed to Keller-Segel for which it holds true (when α = 0):

d

dt

1
2

∫
R2
|x|2ρ(t, x) dx = 2M

(
1− χM

8π

)
.

Concerning global existence, the Keller-Segel system is equipped with a free energy (entropy minus chemical potential energy)
which is dissipated along the trajectories and this provides useful a priori estimates ensuring global existence for small mass.
No such energy is known at the kinetic level. In the present work we use a comparison principle with a singular but integrable
reference function.

1.4 Drift-diffusion limit (formal)

The parabolic Keller-Segel system can be obtained as a drift-diffusion limit of the kinetic Othmer-Dunbar-Alt model [32, 10, 9],
when the chemotaxis bias is a small perturbation of an unbiased process. We may express this fact by modifying the turning
kernel under consideration:

Tε[S](t, x, v, v′) = F (v) + εχ0 (v · ∇S(t, x))+ , (1.18)

instead of (1.2). Thus, the jump process consists in the superposition of a relaxation process (towards a velocity distribution
F (v) ≥ 0 such that

∫
vF (v)dv = 0 and

∫
F (v)dv = 1) and a small bias due to chemotaxis. We assume F (v) to be rotationally

symmetric (in order to match with the context of this paper).
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Remark 9. Previous works (see e.g. [18]) state in general that the scattering operator Tε[f, S](x, v) =
∫
V
Tε[S]f(v′) dv′ −

λε[S]f(v) can be decomposed as T0[f ] + εT1[f, S], where the linear unbiased operator T0[f ] possesses an equilibrium configu-
ration with respect to velocity, namely there exists a probability distribution F (v) such that

∫
V
vF (v)dv = 0 and T0[F ] = 0.

In this paper however we restrict the presentation to the special case of relaxation towards F for the sake of clarity, but the
standard procedure can be performed in the same way.

The kinetic model with the parabolic scaling writes ε∂tfε + v · ∇xfε =
1
ε

(
ρεF (v)− fε + εχ0 (v · ∇Sε)+ ρε − εχ0ω|∇Sε|fε

)
,

−∆Sε + αSε = ρε(t, x) .
(1.19)

Formally, as ε → 0, the cell density fε decouples into a product ρ(t, x)F (v) (so that the leading order term cancels), and ρ
is to be determined. To do so, integrate against 1 and v the first line of (1.19) and get respectively

ε∂tρε +∇ · jε = 0 , with jε =
∫
V

vfε dv ,

ε∂tjε +∇ ·
(∫

V

v ⊗ vfε dv
)

=
1
ε

(
−jε + εχ0

|V |2

8π
(∇Sε) ρε − εχ0ω|∇Sε|jε

)
.

Still formally, we obtain the renormalized flux for small ε

jε
ε

= −∇ ·
(∫

V

v ⊗ vfε dv
)

+ χ0
|V |2

8π
(∇Sε) ρε .

Therefore we obtain as ε goes to zero, the limiting parabolic equation for the cell density in space ρ(t, x),

∂tρ = ∇ ·
([∫

V

v ⊗ vF (v) dv
]
∇ρ
)
− χ0|V |2

8π
∇ · (ρ∇S) , (1.20)

coupled with the chemical potential equation −∆S + αS = ρ.
Notice that the current assumptions fit with the framework of [10], which makes this analysis rigorous for short time

t < t∗ (independent of ε). We refer to the end of Section 3.3 for a discussion about this formal limit from the viewpoint of
blow-up results. In a short, we show that blow-up criterions are indeed the same (asymptotically) for the kinetic model (1.3)
and its parabolic limit. This raises the question whether this convergence is still valid for larger times. In other words: do the
kinetic and the parabolic Keller-Segel systems remain close to each other throughout their respective periods of existence?
Our result strongly supports the fact that the solutions are indeed close for all time (before the blow-up time). However, a
rigorous statement together with a full proof of convergence for all time has yet to be performed.

2 Preliminaries: local in time existence and uniqueness

In this Section we prove local existence and uniqueness (without the assumption of spherical symmetry) for the system (1.3).

Proposition 10. Consider the model (1.3) with the turning kernel given by (1.2). Fix p ∈ (2,∞) and suppose that f0 ∈
L1
x,v ∩ Lpx,v. Then there exists a positive number T depending only on f0 and a unique solution f with

f ∈ L∞
(
[0, T ];L1

(
R2 × V

))
∩ L∞

(
[0, T ];Lp

(
R2 × V

))
Before going into the proof of Proposition 10, let us state a useful elliptic estimate. We omit the easy proof which is a

direct consequence of the Hardy-Littlewood-Sobolev inequality.

Lemma 11 (Elliptic estimate). Let p > 2 and S be the solution of −∆S = ρ in the sense

∇S(x) = − 1
2π

∫
x− y
|x− y|2

ρ(y) dy .

Then
‖∇S‖∞ ≤ C(p) ‖ρ‖1−

p′
2

L1 ‖ρ‖
p′
2
Lp , lim

p→2+
C(p) = +∞ .

Note that this elliptic estimate holds true for p = 2 in the spherically symmetric case. However, we shall not use that
variant here.
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Proof of Proposition 10. Let us write the nonlinear kinetic equation of interest as

∂tf + v · ∇xf = N(f) ,

where the nonlinear scattering operator is given by

N(f) = χ0 (v · ∇S)+ ρ− χ0ω |∇S| f .

We shall prove that the nonlinear operator satisfies a Lipschitz estimate,

‖N(f1)−N(f2)‖X ≤ L (‖f1‖X , ‖f2‖X) ‖f1 − f2‖X , (2.1)

where the norm is defined by
‖g‖X = sup

0≤t≤T

(
‖g(t, x, v)‖L1

x,v
+ ‖g(t, x, v)‖Lp

x,v

)
. (2.2)

We split the difference of the nonlinear contributions into four different parts, namely,

N(f1)−N(f2) = χ0

(
(v · ∇S1)+ − (v · ∇S2)+

)
ρ1 (I)

+χ0 (v · ∇S2)+ (ρ1 − ρ2) (II)
−χ0ω (|∇S1| − |∇S2|) f1 (III)
−χ0ω |∇S2| (f1 − f2) (IV ) .

For the first contribution I we have

|I(t, x, v)| ≤ C(χ0, V ) ‖∇S1(t)−∇S2(t)‖L∞ |ρ1(t, x)| .

The difference of the two gradients in L∞ can be estimated via the elliptic estimate of Lemma 11:

‖∇S1(t)−∇S2(t)‖L∞ ≤ C(p) ‖ρ1(t)− ρ2(t)‖1−
p′
2

L1 ‖ρ1(t)− ρ2(t)‖
p′
2
Lp ,

≤ C(p, V )
(

sup
0≤t′≤T

‖f1(t′)− f2(t′)‖1−
p′
2

L1
x,v

)(
sup

0≤t′≤T
‖f1(t′)− f2(t′)‖

p′
2
Lp

x,v

)
≤ C(p, V ) ‖f1 − f2‖X .

As a consequence we get a Lipschitz condition for the first part I:

|I(t, x, v)| ≤ C(p, χ0, V ) ‖f1 − f2‖X |ρ1(t, x)| ,
‖I‖Lp

x,v
≤ C(p, χ0, V ) ‖f1 − f2‖X ‖ρ1‖Lp

≤ C(p, χ0, V ) ‖f1 − f2‖X ‖f1‖X .

Similarly
‖I‖L1

x,v
≤ C(p, χ0, V ) ‖f1 − f2‖X ‖f1‖X ,

therefore
‖I‖X ≤ C(p, χ0, V ) ‖f1‖X ‖f1 − f2‖X . (2.3)

The estimates for II, III and IV are obtained analogously aso that we end-up with the desired estimate (2.1) with
L (‖f1‖X , ‖f2‖X) = C(p, χ0, V ) (‖f1‖X + ‖f2‖X).

To conclude, let us mention that the norm ‖ · ‖X defined by (2.2) is preserved through the action of the free transport
operator, thus a fixed-point argument can be developped and leads to the conclusion.

Remark 12. In the appendix we state a more complex existence/uniqueness result in suitable spaces LpxL
q
v. This is to fit

with the comparison method of Section 4.

3 Formation of a singularity for large mass

3.1 A blow-up criterion in the case α = 0

We first need to state a technical Lemma for explicit computations.

Lemma 13 (Averaged quantities). Recall that V = B(0, R).

(i) For any q ∈ R2 we have ∫
V

(v · q)+ dv =
2R3

3
|q| .
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(ii) For any (p, q) ∈ R2 × R2, we have ∫
V

(p · v)(v · q)+ dv =
πR4

8
(p · q) .

Proof. Item (i) is immediate.
Concerning item (ii), denote J(p, q) =

∫
v∈V (p · v)(v · q)+ dv, then J is symmetric:

J(p, q) =
∫
v

(p · v)+(v · q)+ dv −
∫
v

(p · v)−(v · q)+ dv

=
∫
v

(p · v)+(v · q)+ dv −
∫
w

(−p · w)−(−w · q)+ dw

=
∫
v

(p · v)+(v · q) dv .

Moreover, J(p, q) is linear w.r.t. p, so it is bilinear w.r.t. (p, q). It remains to compute the associated quadratic form:

J(p, p) =
∫
v

(p · v)(v · p)+ dv

=
1
2

∫
v

(p · v)(v · p) dv

=
1
2
pT
{∫

v

v ⊗ v dv
}
p .

Thanks to isotropy we obtain, ∫
v

v ⊗ v dv =

{∫ R

r=0

∫ 2π

θ=0

r2 cos2 θ rdrdθ

}
Id (3.1)

= π
R4

4
Id .

Consequently we deduce

J(p, q) =
πR4

8
(p · q) .

Proof of Theorem 2. We plan to evaluate explicitly the time evolution of the second moment w.r.t. to space variable x. We
introduce the notation,

I(t) =
1
2

∫∫
R2×V

|x|2f(t, x, v) dvdx ,

We differentiate twice in time:

d

dt
I(t) =

∫
x

∫
v

(x · v)f(t, x, v) dvdx

+
1
2

∫
x

|x|2
{∫

v

∫
v′
T [S](t, x, v, v′)f(t, x, v′)dv′dv −

∫
v

∫
v′
T [S](t, x, v′, v)f(t, x, v) dv′dv

}
dx

=
∫
x

∫
v

(x · v)f(t, x, v) dvdx ,

d2

dt2
I(t) =

∫
x

∫
v

|v|2f(t, x, v) dxdv

+
∫
x

∫
v

∫
v′

(x · v)T [S](t, x, v, v′)f(t, x, v′) dv′dvdx−
∫
x

∫
v

(x · v)λ[S](t, x, v)f(t, x, v) dvdx .

With the particular choice for T [S] given by (1.2) (it does not depend on the anterior velocity v′), we obtain:

d2

dt2
I(t) =

∫
x

∫
v

|v|2f(t, x, v) dvdx

+χ0

∫
x

∫
v

(x · v)(v · ∇S)+ρ(t, x) dvdx− χ0

∫
x

∫
v

(x · v)
{∫

v′
(v′ · ∇S)+ dv′

}
f(t, x, v) dvdx .

Therefore, applying Lemma 13, we get

d2

dt2
I(t) =

∫
x

∫
v

|v|2f(t, x, v) dxdv + χ0
πR4

8

∫
x

x · ∇S(t, x)ρ(t, x) dx− χ0
2R3

3

∫
x

∫
v

(x · v)|∇S|(t, x)f(t, x, v) dvdx . (3.2)
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The following computation is well-known within the theory of the Keller-Segel system [1]:∫
x

x · ∇S(t, x)ρ(t, x) dx = − 1
2π

∫
x

∫
y

x · x− y
|x− y|2

ρ(t, y)ρ(t, x) dydx

= − 1
4π

∫
x

∫
y

(x− y) · x− y
|x− y|2

ρ(t, y)ρ(t, x) dydx

= −M
2

4π
.

Therefore we obtain from (3.2),

d2

dt2
I(t) ≤ R2M − χ0R

4

32
M2 − χ0

2R3

3

∫
x

∫
v

(x · v)|∇S|(t, x)f(t, x, v) dvdx

≤ R2M

(
1− χ0R

2M

32

)
− χ0

2R3

3

∫
x

x · j(t, x)|∇S|(t, x) dx , (3.3)

where the current j(t, x) =
∫
v
vf(t, x, v) dv satisfies

∂tρ+∇ · j = 0 .

Introduce the notation,

δ = R2M

(
χ0R

2M

32
− 1
)
, (3.4)

which is positive by assumption (1.4) of Theorem 2.
In spherical coordinates, we can compute exactly the contribution of the remaining term in (3.3), using the following

identities (see Appendix):

|∇S|(t, x) = |S′(t, r)| , r|S′(t, r)| =
∫ r

λ=0

λρ(t, λ) dλ ,

j(t, x) = j‖(t, r)
x

r
+ j⊥(t, r)

x⊥

r
, rj‖(t, r) = − ∂

∂t

∫ r

λ=0

λρ(t, λ) dλ =
∂

∂t

∫ ∞
λ=r

λρ(t, λ) dλ .

Therefore, under the hypothesis of spherical symmetry we get

−
∫

R2
x · j(t, x)|∇S|(t, x) dx = −2π

∫ ∞
r=0

rj‖(t, r)|S′(t, r)| rdr

= −2π
∫ ∞
r=0

∂

∂t

(∫ ∞
λ=r

λρ(t, λ) dλ
)(

M

2π
−
∫ ∞
λ=r

λρ(t, λ) dλ
)
dr

= −M d

dt

∫ ∞
r=0

∫ ∞
λ=r

λρ(t, λ)dλ dr + π
d

dt

∫ ∞
r=0

(∫ ∞
λ=r

λρ(t, λ) dλ
)2

dr .

Integrating once in time the inequality (3.3) leads to

d

dt
I(t) ≤ d

dt
I(t)

∣∣∣
t=0
− δt+ χ0

2R3

3
(K(0)−K(t)) ,

where K(t) is defined by

K(t) = M

∫ ∞
r=0

∫ ∞
λ=r

λρ(t, λ) dλdr − π
∫ ∞
r=0

(∫ ∞
λ=r

λρ(t, λ) dλ
)2

dr

=
M

2

∫ ∞
r=0

∫ ∞
λ=r

λρ(t, λ) dλdr + π

∫ ∞
r=0

(
M

2π
−
∫ ∞
λ=r

λρ(t, λ) dλ
)(∫ ∞

λ=r

λρ(t, λ) dλ
)
dr .

Thus K(t) is obviously a nonnegative quantity. It is worth noticing that K(t) is finite provided that the density ρ has a
finite first moment. Indeed we have

K(t) ≤ M

∫ ∞
r=0

∫ ∞
λ=r

λρ(t, λ) dλdr

= M

∫ ∞
λ=0

λ2ρ(t, λ) dλ

≤ M

2π

∫
R2
|x|ρ(t, x) dx .

9



We deduce in particular using the Cauchy-Schwarz inequality,

K(t) ≤ 1
2π
M3/2

√
2I(t) . (3.5)

Remark 14. It seems surprising that the contribution of the loss term to (3.2) can be written as the derivative of a nonpositive
quantity. It is not surprising however if we notice that in spherical coordinates, this contribution is the scalar product between
rj‖(t, r) and rS′(t, r) satisfying respectively 

∂

∂r

(
rj‖(t, r)

)
= − ∂

∂t

(
rρ(t, r)

)
,

∂

∂r

(
rS′(t, r)

)
= rρ(t, r) .

On the other hand this property still holds true when the turning kernel contains a linear part (see (3.14)).

We end up eventually with

d

dt
I(t) ≤

∫∫
R2×V

(x · v)f0(x, v) dvdx− δt+ χ0
2R3

3
K(0) . (3.6)

This proves that the second moment formally vanishes in finite time. Therefore a singularity necessarily forms before this
time, otherwise it would contradict local existence stated in the Appendix.

The case of V = S(0, R)

In the case where the set of admissible velocities is the sphere of radius R, we can adapt the proof above to demonstrate
that blow-up occurs if

δ̃ = R2M

(
χ0RM

8
− 1
)
, (3.7)

is a positive quantity. The important modification arises in the constants evaluated in Lemma 13. We can adapt the
computations in that Lemma to obtain that for any (p, q) ∈ R2 × R2, we have∫

V

(p · v)(v · q)+ dv =
πR3

2
(p · q) .

As a consequence, we get that the key differential inequality (3.6) becomes in this new setting,

d

dt
I(t) ≤

∫∫
R2×V

(x · v)f0(x, v) dvdx− δ̃t+ χ02R2K(0) , (3.8)

This concludes the adaptation to the case of the sphere.

3.2 Blow-up including chemical degradation (α > 0)

It is now classical that for results concerning blow-up in the parabolic Keller-Segel system, the additional contribution of
chemical degradation

−∆S + αS = ρ ,

does not change dramatically the flavor of the results. It affects the blow-up criterion, however, and so it does in our situation.
In order to study the influence of the chemical degradation, we shall estimate carefully the size of the corrective terms

that come from the difference between the Poisson kernel and the Bessel kernel, respectively

B0(z) =
1

2π
log

1
|z|

, Bα(z) =
1

4π

∫ +∞

t=0

1
t
e−

|z|2
4t −αt dt . (3.9)

Lemma 15. There exists a universal constant C such that

‖∇Bα −∇B0‖∞ ≤
√
αC . (3.10)

Remark 16. Observe that the scaling
√
α comes naturally from knowing the estimate between B1 and B0.
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Proof. We give an argument in Fourier space. In fact B̂α(ξ) = (α+ |ξ|2)−1, and we get:

‖∇Bα −∇B0‖∞ ≤ 1
2π

∥∥∥∇̂Bα − ∇̂B0

∥∥∥
1

≤ 1
2π

∫
R2
|ξ|
(

1
|ξ|2
− 1
α+ |ξ|2

)
dξ

≤ 1
2π

∫
R2

α

|ξ| (α+ |ξ|2)
dξ

≤
√
α

2π

∫
R2

1
|ζ| (1 + |ζ|2)

dζ .

Proof of Corollary 3. Following (3.2) and subsequent lines we are able to obtain a perturbed inequality for the second space
moment of the density:

d2

dt2
I(t) =

∫
x

∫
v

|v|2f(t, x, v) dxdv + χ0
πR4

8

∫
x

x · ∇S̃(t, x)ρ(t, x) dx− χ0
2R3

3

∫
x

∫
v

(x · v)|∇S̃|(t, x)f(t, x, v) dvdx

+χ0
πR4

8
M

∫
x

x ·
(
∇S(t, x)−∇S̃(t, x)

)
ρ(t, x) dx− χ0

2R3

3

∫
x

∫
v

(x · v)
(
|∇S|(t, x)− |∇S̃|(t, x)

)
f(t, x, v) dvdx ,

(3.11)

where ∇S̃ is defined by −∆S̃ = ρ as above (cf. the case α = 0). The first line of (3.11) can be explicitly computed as before.
It remains to estimate the error terms (on the second line) using Lemma 15. In fact we have using Young’s inequality:∣∣∣∣χ0

πR4

8

∫
x

x ·
(
∇S(t, x)−∇S̃(t, x)

)
ρ(t, x) dx

∣∣∣∣ ≤ χ0M
πR4

8

∫
x

|x| ‖∇Bα −∇B0‖∞ ρ(t, x) dx

≤
√
αχ0M

πR4

8
C
∫
x

|x|ρ(x) dx

≤
√
αχ0M

πR4

8
C
√
M
√

2I(t) .

In the same way we get,∣∣∣∣χ0
2R3

3

∫
x

∫
v

(x · v)
(
|∇S|(t, x)− |∇S̃|(t, x)

)
f(t, x, v) dvdx

∣∣∣∣ ≤ χ0
2R4

3

∫
x

|x|
∣∣∣∇S(t, x)−∇S̃(t, x)

∣∣∣ ρ(t, x) dx

≤
√
αχ0M

2R4

3
C
∫
x

|x|ρ(x) dx

≤
√
αχ0M

2R4

3
C
√
M
√

2I(t) .

Therefore we end up with the following integro-differential inequality instead of (3.6):

d

dt
I(t) ≤

∫
x

∫
v

(x · v)f0(x, v) dvdx− δt+ χ0
2R3

3
K(0) +

√
αχ0M

3/2R4C
∫ t

τ=0

√
I(τ) dτ . (3.12)

Recall that δ > 0 is defined in (3.4). The universal constant C is now fixed for the rest of this proof. Denote

µ0 =
∫
x

∫
v

(x · v)f0(x, v) dvdx+ χ0
2R3

3
K(0) ,

η =
√
αχ0M

3/2R4C .

Integrating once more and inverting the order of integration we get

I(t) ≤ I(0) + µ0t−
δ

2
t2 + η

∫ t

s=0

∫ s

τ=0

√
I(τ) dτds

≤ I(0) + µ0t−
δ

2
t2 + η

∫ t

τ=0

(t− τ)
√
I(τ) dτ

≤ I(0) + µ0t−
δ

2
t2 + η

∫ t

τ=0

(
ε

2
(t− τ)2 +

1
2ε
I(τ)

)
dτ

≤ I(0) + µ0t−
δ

2
t2 +

ηε

6
t3 +

η

2ε

∫ t

τ=0

I(τ) dτ .
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We obtain as a consequence,∫ t

τ=0

I(τ) dτ ≤ eηt/2ε
∫ t

τ=0

e−ητ/2ε
(
I(0) + µ0τ −

δ

2
τ2 +

ηε

6
τ3

)
dτ .

A sufficient condition for a contradiction to occur is that the right-hand side becomes negative as t→∞. For this purpose,
compute

η

2ε

∫ ∞
τ=0

e−ητ/2ε
(
I(0) + µ0τ −

δ

2
τ2 +

ηε

6
τ3

)
dτ =

∫ ∞
σ=0

e−σ
(
I(0) +

2εµ0

η
σ − 2ε2δ

η2
σ2 +

4ε4

3η2
σ3

)
dσ

= I(0) +
2εµ0

η
− 4ε2δ

η2
+

8ε4

η2
.

Choose for instance ε =
√
δ/2. Then the quantity

∫ t
τ=0

I(τ)dτ eventually vanishes if the following condition is fulfilled:

I(0) +

√
δµ0

η
<

δ2

2η2
. (3.13)

To conclude the proof of Corollary 3, observe that, resulting from (3.5) we get:

µ0 ≤ R
√
M
√

2I(0) +
χ0M

3/2R3

3π

√
2I(0) ,

so that the necessary condition (3.13) might be replaced by the stronger criterion:

η2 2I(0)
δ

+ 2
(
R
√
M +

χ0M
3/2R3

3π

)√
η2

2I(0)
δ

< δ .

This criterion can be read as X + 2A
√
X < δ, which is equivalent to

√
X <

√
δ +A2 −A. Therefore, the following criterion

is a necessary condition for solutions to blow-up after finite time,

η2 2I(0)
δ

< A2

(
δ

A2
+ 2− 2

√
1 +

δ

A2

)
,

A = R
√
M +

χ0M
3/2R3

3π
.

3.3 Drift-diffusion limit and blow-up (case α = 0)

In the Introduction, we derive formally the parabolic Keller-Segel system from the kinetic system with suitable turning kernel
(1.18).

Repeating the computations of Section 3.1 in this case leads to

ε2
d2

dt2
Iε(t) =

∫
x

∫
v

|v|2fε(t, x, v) dvdx+
1
ε

∫
x

∫
v

(x · v)ρε(t, x)F (v) dvdx− 1
ε

∫
x

x · jε(t, x) dx− χ0R
4

32
M2 − χ0

2R3

3
d

dt
Kε(t)

=
∫
x

∫
v

|v|2fε(t, x, v) dvdx− χ0R
4

32
M2 − 1

2ε

∫
x

(
∇|x|2

)
jε(t, x) dx− χ0

2R3

3
d

dt
Kε(t) ,

because
∫
V
vF (v) dv = 0 by assumption. To conclude as above that the remaining term is the derivative of a nonpositive

quantity, observe that

−
∫

R2

(
∇|x|2

)
jε(t, x) dx =

∫
R2
|x|2∇ · jε(t, x) dx

= −ε
∫

R2
|x|2∂tρε(t, x) dx

= −ε d
dt

∫
R2
|x|2ρε(t, x) dx . (3.14)

Integrating once in time we obtain

ε2
d

dt
Iε(t) ≤ ε

∫
x

∫
v

(x · v)fε(x, v) dvdx+R2M

(
1− χ0R

2M

32

)
t+ Iε(0)− Iε(t) + χ0

2R3

3
(Kε(0)−Kε(t)) . (3.15)
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Arguing as before, we conclude that the solution blows-up in finite time under the same assumption as Theorem 2.
On the other hand, we know precisely the blow-up criterion for the parabolic limit. It depends upon the choice of the

relaxation function F (v). This function can vary between two extremal choices: a Dirac mass at zero, and a Dirac mass

spread on the sphere {|v| = R}. Consider for example F (v) ≡ 1
|V |

1V . The parabolic limit (1.20) writes

∂tρ = ∇ ·
(
R2

4
∇ρ
)
− χ0πR

4

8
∇ · (ρ∇S) ,

thanks to isotropy (3.1). Thus the blow-up criterion for finite-time blow-up reads

M >
16
χ0R2

,

which differs from the kinetic criterion (1.4) by a factor 2 (the two criteria actually match in the case where F (v) is the
normalized Dirac mass on the sphere of radius R). To fill this gap it is necessary to reconsider the parabolic limit a
ε → 0. In fact the positive contribution R2M in (3.15) comes from the upper-bound of

∫∫
R2×V |v|

2fε(tx, v)dvdx. One may
notice that for small ε, fε(t, x, v) gets close to ρ(t, x)F (v), and this upper-approximation is not sharp (except in the case
where F (v) is especially the Dirac mass on the sphere of radius R). Therefore we may replace

∫∫
R2×V |v|

2fε(t, x, v)dvdx by
M
∫
V
|v|2F (v) dv. To finish with, observe that the diffusion tensor at the parabolic limit can be calculated due to rotational

invariance, ∫
V

v ⊗ vF (v) dv =
1
2

(∫
V

|v|2F (v) dv
)

Id .

Under these considerations, the kinetic and the parabolic criterions do coincide.

4 Global existence for small mass

The aim of this section is to prove global existence for the kinetic model (1.3) in the spherically symmetric case under the
small mass condition stated in Theorem 4.

Spherical symmetry is used in a crucial way in the following estimate:

(v · ∇S)+ = |S′(r)|
(
v · x
|x|

)
−
≤
(
v · x
|x|

)
−

M

2π|x|
. (4.1)

To justify (4.1), just write

−S′(r) =
1
r

∫ r

λ=0

λρ(λ) dλ ≤ M

2πr
.

Recall that 0 < γ < 1 is an exponent given by some upper-bound on the initial data. Recall the definition of the auxiliary
function k(x, v):

k(x, v) = k0

∣∣∣∣∣x−
(
v

|v|
· x
)

+

v

|v|

∣∣∣∣∣
−γ

= k0

{
|x|−γ if (v · x) < 0

|Πv⊥(x)|−γ if (v · x) > 0
, (4.2)

where Πv⊥ = Id − v ⊗ v/|v|2 denotes the orthogonal projection onto v⊥. We shall prove in fact that, as soon as f0(x, v) ≤
k(x, v), then it holds true that f(t, x, v) ≤ k(x, v) for all time t > 0. This will be achieved through a comparison principle
adapted to our context.

Proposition 17 (Properties of the auxiliary function k). (i) The function k(x, v) belongs to Lploc,xL
q
v provided that p <

2/γ and q < 1/γ. Moreover it is a C1 function of (x, v) in
(
R2 × V

)
\{(x, v)|x and v are positively linearly dependent}.

(ii) For all (x, v) we have k(x, v) ≥ k0|x|−γ . Therefore the initial comparison f0(x, v) ≤ k(x, v) is guaranteed by the
assumptions of Theorem 4.

Proof. Working exactly as in the proof of (4.4) below we find that
∫
V
k(x, v)qdv = kq0

|V |
2 Ω(γq) |x|−γq, where Ω(γq) (see (1.6))

is finite thanks to q < 1/γ. Taking the Lpx-norm gives the first assertion. The inequality k(x, v) ≥ k0|x|−γ is obvious when
x · v < 0, and follows from |Πv⊥(x)| = |x| | sin θ|, where θ = ∠(x, v), when x · v < 0.

The crucial Lemma, which motivates the definition (4.2) of k(x, v) is the following one.

Lemma 18. Assume (1.7). The function k(x, v) is a supersolution of (1.3), in the sense that:

v · ∇xk =
(
v · x
|x|

)
−

γ

|x|
k(x, v)

≥ χ0

(
v · x
|x|

)
−

1
|x|

M

2π

∫
v′
k(x, v′) dv′ . (4.3)
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Proof. First we evaluate∫
v′
k(x, v′) dv′ = k0|x|−γ

∫
{v′∈V |(x·v′)<0}

dv + k0|x|−γ
∫
{v′∈V |(x·v′)>0}

∣∣∣∣Πv′⊥(x)
|x|

∣∣∣∣−γ dv′
= k0|x|−γ

|V |
2

+ k0|x|−γ
∫ R

ν=0

∫ π/2

θ=−π/2
|sin θ|−γ νdνdθ

= k0|x|−γ
|V |
2

Ω(γ)

≤ k(x, v)
|V |
2

Ω(γ) . (4.4)

where we have used part (ii) of Proposition 17.
In order to prove (4.3), let us distinguish between (v · x) > 0 and (v · x) < 0. In the former case we have

v · ∇xk = −γk0v · (Πv⊥ ◦Πv⊥) (x)|Πv⊥(x)|−γ−2

= 0 .

because Πv⊥ is a linear symmetric operator whose image is orthogonal to v. In the latter case (v · x) < 0 we have

v · ∇xk = −γk0(v · x)|x|−γ−2

=
(
v · x
|x|

)
−

γ

|x|
k(x, v)

≥
(
v · x
|x|

)
−

2γ
|V |Ω(γ)

1
|x|

∫
v′
k(x, v′) dv′ .

and we conclude the proof by using the smallness condition (1.7) in the assumptions of Theorem 4.

Definition 19 (Set of admissible exponents). A couple of exponents (p, q) is said to be admissible if it satisfies

2 < p <
2
γ
, 1 < q <

1
γ
, 0 ≤ 1

q
− 1
p
<

1
2
,

q′

p′
>

1− γ/2
1− γ

.

This set is nonempty as it can be seen when (p, q)→ (2+, 1+).

Lemma 20 (LpxL
q
v regularity is ensured by comparison). Let (p, q) be a set of admissible exponents. Assume that f(T, x, v)

lies below k(x, v). Then f(T, x− tv, v) belongs to LpxL
q
v for all t > 0.

Proof. We shall first prove that
∀x 6= 0 ‖k(x− tv, v)‖Lq

v
≤ C(q, γ, k0, V ) |x|−γ . (4.5)

For this purpose, let us decompose∫
V

k(x− tv, v)q dv = kq0

∫
{v∈V |(x−tv)·v<0}

|x− tv|−γq dv + kq0

∫
{v∈V |(x−tv)·v>0}

|Πv⊥(x− tv)|−γq dv . (4.6)

For the second contribution in the right-hand-side above we use Πv⊥(x − tv) = Πv⊥(x) and |Πv⊥(x)| = |x| | sin θ|, where
θ = ∠(x, v), to get

kq0

∫
{v∈V |(x−tv)·v>0}

|Πv⊥(x− tv)|−γq dv ≤ kq0

∫
V

|Πv⊥(x)|−γq dv

≤ kq0 |x|
−γq R

2

2

∫ π

θ=−π
|sin θ|−γq dθ

= C(q, γ, k0, V ) |x|−γq . (4.7)

To estimate the first contribution in the right-hand-side of (4.6) we distinguish between two cases.
If |x| ≤ 2tR then V ⊂ {v ∈ R2| |x/t− v| ≤ 3R}, therefore

kq0

∫
{v∈V |(x−tv)·v<0}

|x− tv|−γq dv ≤ kq0t
−γq

∫
V

∣∣∣x
t
− v
∣∣∣−γq dv

≤ kq0t
−γq

∫
{w∈R2||w|≤3R}

|w|−γq dv

≤ kq0

(
|x|
2R

)−γq
C(q, γ, V )

≤ C(q, γ, k0, V ) |x|−γq .
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On the other hand, if |x| ≥ 2tR then we use |x− tv| ≥ |x| − t |v| ≥ |x|/2 to obtain eventually,

kq0

∫
{v∈V |(x−tv)·v<0}

|x− tv|−γq dv ≤ kq0 2γq |x|−γq |V | . (4.8)

In a second step we split the LpxL
q
v norm of f(T, x − tv, v) into a short-range part (in space) and a long-range part, as

follows
‖f(T, x− tv, v)‖Lp

xL
q
v
≤
∥∥f(T, x− tv, v)1|x|≤1

∥∥
Lp

xL
q
v

+
∥∥f(T, x− tv, v)1|x|≥1

∥∥
Lp

xL
q
v
.

For the short-range contribution |x| ≤ 1 we use (4.5) – which is a combination of (4.7) and (4.8) – to get∥∥f(T, x− tv, v)1|x|≤1

∥∥
Lp

xL
q
v
≤
∥∥k(x− tv, v)1|x|≤1

∥∥
Lp

xL
q
v
≤ C(q, γ, k0, V )

∥∥∥|x|−γ 1|x|≤1

∥∥∥
Lp

x

≤ C(p, q, γ, k0, V ) .

because γp < 2.
For the long-range contribution |x| ≥ 1 we introduce a pair of auxiliary exponents (P,Q) such that,

2
γ
< P <∞ , 1 < Q <

1
γ
,

P ′

Q′
=
p′

q′
.

We shall ensure that such a choice of (P,Q) exists: in fact when Q→ (1/γ)− we have

1− γ/2
1− γ

<
q′

p′
=
Q′

P ′
→ 1

P ′
1

1− γ
.

Therefore we can find P ′ < (1− γ/2)−1, i.e. P > 2/γ.
Define θ = P ′/p′ = Q′/q′. We have the interpolation relation LpxL

q
v = [L1

x,v, L
P
x L

Q
v ]1−θ,θ, because

1
p

= 1− θ +
θ

P
,

1
q

= 1− θ +
θ

Q
.

As a consequence,∥∥f(T, x− tv, v)1|x|≥1

∥∥
Lp

xL
q
v
≤

∥∥f(T, x− tv, v)1|x|≥1

∥∥1−θ
L1

xL
1
v

∥∥f(T, x− tv, v)1|x|≥1

∥∥θ
LP

x L
Q
v

≤ M1−θ ∥∥k(x− tv, v)1|x|≥1

∥∥θ
LP

x L
Q
v

≤ C ′(p, q, γ, k0, V,M)
∥∥∥|x|−γ 1|x|≥1

∥∥∥θ
LP

x

≤ C(p, q, γ, k0, V,M) .

Proof of Theorem 4. We aim at proving that the solution f(t, x, v) remains below k(x, v) for all time. This will be achieved
through a suitable comparison principle.

We obtain from Lemma 18 and the elliptic bound (4.1) (which holds true in the spherically symmetric framework) the
following crucial estimate:

v · ∇xk ≥ χ0

(
v · x
|x|

)
−

M

2π|x|

∫
v′
k(x, v′) dv′ ≥ χ0(v · ∇S)+

∫
v′
k(x, v′) dv′ . (4.9)

Therefore we get the following differential inequality, well-suited for proving a sort of comparison principle:

∂t(f − k) + v · ∇x(f − k) ≤ χ0(v · ∇S)+

(
ρ(x)−

∫
v′
k(x, v′) dv′

)
. (4.10)

However the non-local nature of the right-hand side requires more regularity, and a local in time estimate (obtained in the
Appendix) will enter into the game. Due to the lack of integrability at infinity of the reference function k, we aim to localize
in space such a partial differential inequality. In order to do so, multiply (4.10) by the test function ϕ(x) = exp

(
−
√

1 + |x|2
)

which satisfies:

∀x |∇ϕ(x)| =

∣∣∣∣∣ x√
1 + |x|2

∣∣∣∣∣ϕ(x) ≤ ϕ(x) . (4.11)

Introduce the notation:
K(x) =

∫
v′∈V

k(x, v′) dv′ .
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We get the following localized partial differential inequality,

∂t ((f − k)ϕ) + v · ∇x ((f − k)ϕ) ≤ χ0(v · ∇S)+ (ρ−K)ϕ+ (f − k)v · ∇ϕ . (4.12)

Introduce Pε a sub-approximation of the positive part (·)+. Namely we choose Pε(z) = εP1(z/ε), where

P1(z) =

 0 if z ≤ 0
z2/2 if 0 ≤ z ≤ 1
z − 1/2 if z ≥ 1

.

In particular, Pε(z) is identically zero on {z ≤ 0}, 0 ≤ P′ε(z) ≤ 1 and moreover

∀ z |z|P′ε(z) ≤ 2Pε(z) . (4.13)

Multiplying (4.12) by P′ε((f − k)ϕ) we obtain

∂tPε((f − k)ϕ) + v · ∇xPε((f − k)ϕ) ≤ χ0(v · ∇S)+ (ρ−K)ϕP′ε((f − k)ϕ) + (f − k) (v · ∇ϕ) P′ε((f − k)ϕ)
≤ χ0(v · ∇S)+ (ρ−K)+ ϕ+ 2RPε((f − k)ϕ) ,

due to (4.11) and (4.13). Therefore we obtain, thanks to Duhamel’s representation of the solution after a given time T ,

Pε((f − k)ϕ)(T + t, x, v) ≤ e2RtPε((f − k)ϕ)(T, x− tv, v)

+ e2Rtχ0R

∫ t

s=0

e−2Rs
(
|∇S| (ρ−K)+ ϕ

)
(T + s, x− (t− s)v) ds .

As ε→ 0 we obtain the following integral inequality,

(fϕ− kϕ)+(T + t, x, v) ≤ e2Rt(fϕ− kϕ)+(T, x− tv, v)

+ e2Rtχ0R

∫ t

s=0

e−2Rs
(
|∇S| (ρϕ−Kϕ)+

)
(T + s, x− (t− s)v) ds .

Next compute similarly as in the Appendix (by the help of the dispersion estimate Lemma 6) for admissible exponents
(p, q) (Definition 19),

‖(fϕ− kϕ)+(T + t, x, v)‖Lp
xL

q
v
≤ e2Rt‖(fϕ− kϕ)+(T, x− tv, v)‖Lp

xL
q
v

+χ0C(V )e2Rt
∫ t

s=0

e−2Rs 1
(t− s)2(1/q−1/p)

‖|∇S|(ρϕ−Kϕ)+(T + s)‖Lqds

≤ e2Rt‖(fϕ− kϕ)+(T, x− tv, v)‖Lp
xL

q
v

+χ0C(V )e2Rt
∫ t

s=0

e−2Rs 1
(t− s)2(1/q−1/p)

‖∇S(T + s)‖Lp?‖(ρϕ−Kϕ)+(T + s)‖Lpds

≤ e2Rt‖(fϕ− kϕ)+(T, x− tv, v))‖Lp
xL

q
v

+χ0C(V )e2Rt
∫ t

s=0

e−2Rs 1
(t− s)2(1/q−1/p)

‖ρ(T + s)‖Lr‖(ρϕ−Kϕ)+(T + s)‖Lpds ,

where the Hölder exponents are given by 1/p? + 1/p = 1/q and the Sobolev exponent (r < 2) is given by 1/r = 1/2 + 1/p? =
1/2 + 1/q − 1/p < 1.

Furthermore, because the positive part (·)+ is a convex function, and V is a bounded set, we have by Jensen’s inequality,

(ρϕ−Kϕ)+(T + s, x) =
(∫

v∈V
|V |(fϕ− kϕ)(T + s, x, v)

dv

|V |

)
+

≤
∫
v∈V

(|V |(fϕ− kϕ))+ (T + s, x, v)
dv

|V |
,

‖(ρϕ−Kϕ)+(T + s)‖Lp ≤ ‖(fϕ− kϕ)+(T + s)‖Lp
xL1

v
≤ C(q, V )‖(fϕ− kϕ)+(T + s)‖Lp

xL
q
v
.

As soon as f(T, x, v) remains below k(x, v), Lemma 20 guarantees that the free transport contribution f(T, x − tv, v)
belongs to LpxL

q
v for admissible exponents (p, q). As a consequence of the local in time existence result of Proposition 22 (in

the Appendix), we can ensure that f(T + t, x, v) belongs to LpxL
q
v for small time t > 0. Thus ρ(T + t, x) belongs to Lr for

any r < 2 in particular.
Therefore the Gronwall lemma guarantees that ‖(fϕ − kϕ)+‖Lp

xL
q
v
, if it is zero up to some time T , it remains zero for

small later times T + t.
To conclude, we have proven a comparison principle which guarantees that the solution f(t, x, v) with small mass M

remains below k(x, v) for all time t > 0. This prevents blow-up in system (1.3).
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Appendix A: Solutions having spherical symmetry

The notion of spherical symmetry in kinetic theory is contained in the following Definition 21. Recall that the set of admissible
velocities is the ball V = B(0, R).

Definition 21. A function f(x, v) defined for (x, v) ∈ R2×V is spherically symmetric if for every rotation Θ of R2 we have
f(Θx,Θv) = f(x, v).

If f(x, v) is spherically symmetric then the space density ρ(x) =
∫
v∈V f(x, v)dv is spherically symmetric in the usual

sense, i.e ρ(Θx) = ρ(x) for all rotations Θ. Therefore ρ depends only on r = |x|. Abusing notations we write both ρ(x) and
ρ(r) but the meaning will always be clear from the context.

If f(x, v) is spherically symmetric then its current j(x) =
∫
V
vf(x, v)dv does not necessarily point in the direction of x.

For example, if f(x, v) = x · v⊥ = x2v1 − x1v2 , then,

j(x) = −πR
4

4
(−x2, x1) ⊥ x .

However, if we decompose

j(x) = j‖(x)
x

|x|
+ j⊥(x)

x⊥

|x|
, (4.14)

then we have for every rotation Θ,

j(Θx) =
∫
V

vf(Θx, v) dv =
∫
V

(Θw)f(Θx,Θw) d(Θw)Θj(x) .

Therefore the decomposition’s coefficients in (4.14) are both spherically symmetric:

j‖(Θx) = j‖(x) , and j⊥(Θx) = j⊥(x) .

Abusing notation we write

j(x) = j‖(r)
x

r
+ j⊥(r)

x⊥

r
.

We can then simply derive the following identities which are crucially used in Section 3:

x · j(x) = rj‖(r) , (4.15)

∇ · j(x) =
1
r

(
rj‖(r)

)′
. (4.16)

The kinetic system (1.3) preserves spherical symmetry

If we start with spherically symmetric initial data f0(x, v) then Proposition 10 guarantees the existence of a local in time
solution f(t, x, v). It is not difficult to verify that for any rotation Θ the function f(t,Θx,Θv) is also a solution to (1.3) (see
below). Therefore, by the uniqueness part of Proposition 10 they have to coincide. It follows that f(t, x, v) is spherically
symmetric throughout the time interval of existence.

Let (f, S) be a solution and Θ be a rotation of R2. Define (g,Q) by

g(t, x, v) = f(t,Θx,Θv) , Q(t, x) = S(t,Θx) .

On the one hand,

∂tg(t, x, v) + v · ∇xg(t, x, v) = ∂tf(t,Θx,Θv) + v ·ΘT (∇xf)(t,Θx,Θv)
= ∂tf(t,Θx,Θv) + Θv · (∇xf)(t,Θx,Θv) .

On the other hand,∫
V

T [S](t,Θx,Θv, v′)f(t,Θx, v′) dv′ −
∫
V

T [S](t,Θx, v′,Θv)f(t,Θx,Θv) dv′

=
∫
V

(Θv · (∇S)(t,Θx))+ f(t,Θx, v′) dv′ −
∫
V

(v′ · (∇S)(t,Θx))+ f(t,Θx,Θv) dv′

=
∫
V

(
v ·ΘT (∇S)(t,Θx)

)
+
f(t,Θx,Θw) dw −

∫
V

(
w ·ΘT (∇S)(t,Θx)

)
+
f(t,Θx,Θv) dw

=
∫
V

(v · (∇Q)(t, x))+ g(t, x, w) dw −
∫
V

(w · (∇Q)(t, x))+ g(t, x, v) dw

=
∫
V

T [Q](t, x, v, w)g(t, x, w) dw −
∫
V

T [Q](t, x, w, v)g(t, x, v) dw.

Also
−∆Q(x) + αQ(x) = −(∆S)(Θx) + αS(Θx) =

∫
V

f(Θx, v)dv =
∫
V

f(Θx,Θw)dw =
∫
V

g(x,w)dw .
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Appendix B: Existence and uniqueness in a weaker framework

The goal of this appendix is to provide a variant of Proposition 10 in a framework well-suited for proving the global existence
result of Section 4. As a matter of fact, the reference function k(x, v) used there belongs to Lploc,xL

q
v for any 1 ≤ p < 2/γ and

1 ≤ q < 1/γ. On the other hand, Proposition 10 deals with solutions lying in LpxL
p
v, p > 2, thus it does not cover properly

the case γ > 1/2.

Assumption A2 (Initial datum, precised version). Assume that the initial density f0(x, v) ≥ 0 belongs to L1
x,v and satisfies

the estimate ‖f0(x− tv, v)‖Lp
xL

q
v
≤ C0 for small times t ≥ 0, and for some couple of exponents (p, q) verifying:

2 < p , 1 < q , 0 ≤ 1
q
− 1
p
<

1
2
. (4.17)

Observe that Assumption A2 is satisfied as soon as f0 ∈ Lpx,v for some p > 2. Thus it is weaker than Assumption A1,
except for the condition of spherical symmetry.

Proposition 22. Assume that the initial density f0 verifies Assumption A2 for some couple of exponents (p, q) such that
(4.17) holds true. Then there exists a unique (local in time) solution to system (1.3) with f(t, x, v) ∈ LpxLqv.

Before the proof of this Proposition, let us start with a general feature of kinetic transport equations with source and decay
terms. The solution of ∂th+ v · ∇xh+ λ(t, x, v)h = g with vanishing initial data is given by the Duhamel’s representation,

h(t, x, v) =
∫ t

s=0

g(s, x− (t− s)v, v) exp
{
−
∫ t

τ=s

λ(τ, x− (t− τ)v, v) dτ
}
ds .

In case λ is a nonnegative function, we obtain,

|h(t, x, v)| ≤
∫ t

s=0

|g(s, x− (t− s)v, v)| exp
{
−
∫ t

τ=s

λ(τ, x− (t− τ)v, v) dτ
}
ds

≤
∫ t

s=0

|g(s, x− (t− s)v, v)| ds .

Proof of Proposition 22. We aim to write directly a fixed-point argument under the reference norm,

‖g‖Y = sup
0≤t≤T

(
‖g(t, x, v)‖L1

x,v
+ ‖g(t, x, v)‖Lp

xL
q
v

)
. (4.18)

We start from

∂t(f1 − f2) + v · ∇x(f1 − f2) + χ0ω |∇S2| (f1 − f2) =

χ0

(
(v · ∇S1)+ − (v · ∇S2)+

)
ρ1 + χ0 (v · ∇S2)+ (ρ1 − ρ2)− χ0ω (|∇S1| − |∇S2|) f1 . (4.19)

Applying the preliminary observation to equation (4.19) we obtain

|f1 − f2|(t) ≤ C

∫ t

s=0

(
‖∇S1 −∇S2‖∞ |ρ1(s, x− (t− s)v)|+ ‖∇S2‖∞ |ρ1 − ρ2| (s, x− (t− s)v)

)
ds

+C
∫ t

s=0

‖∇S1 −∇S2‖∞ |f1(s, x− (t− s)v, v)| ds ,

Therefore we are able to develop a dispersion technique as usual,

‖(f1 − f2)(t)‖Lp
xL

q
v
≤ C

∫ t

s=0

(t− s)−2(1/q−1/p)
(
‖(∇S1 −∇S2)(s)‖∞ ‖ρ1(s)‖Lq + ‖∇S2‖∞‖(ρ1 − ρ2)(s)‖Lq

)
ds

+C
∫ t

s=0

‖(∇S1 −∇S2)(s)‖∞ ‖f1(s, x− (t− s)v, v)‖LpLq ds

≤ C (‖f1‖Y + ‖f2‖Y )
(∫ t

s=0

(t− s)−2(1/q−1/p) ds

)
‖f1 − f2‖Y

+C
(∫ t

s=0

‖f1(s, x− (t− s)v, v)‖LpLq ds

)
‖f1 − f2‖Y ,

where we have used Lemma 11. In parallel, we get a bound for ‖f1(s, x− (t− s)v, v)‖Lp
xL

q
v
. We argue as follows: f1 solves

∂tf1 + v · ∇xf1 + χ0ω |∇S1| f1 = χ0 (v · ∇S1)+ ρ1 ,
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and since the coefficient χ0ω |∇S1| is non-negative, we can argue as above to get

|f1(s, x, v)| ≤ |f1(0, x− sv, v)|+ C

∫ s

τ=0

‖∇S1(τ)‖∞ |ρ1(τ, x− (s− τ)v, v)| dτ ,

and eventually

|f1(s, x− (t− s)v, v)| ≤ |f1(0, x− tv, v)|+ C

∫ s

τ=0

‖∇S1(τ)‖∞ |ρ1(τ, x− (t− τ)v, v)| dτ ,

‖f1(s, x− (t− s)v, v)‖Lp
xL

p
q
≤ ‖f0(x− tv, v)‖Lp

xL
q
v

+ C

∫ s

τ=0

(t− τ)−2(1/q−1/p)‖∇S1(τ)‖L∞‖ρ1(τ)‖Lq dτ

≤ C0 + C‖f1‖2Y
∫ t

τ=0

(t− τ)−2(1/q−1/p) dτ ,

from which we deduce that the flow is contractant for small time w.r.t. the reference norm ‖ · ‖Y , and relatively to the initial
datum.

19



References

[1] A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative
properties of the solutions, Electron. J. Differential Equations 44, 32 pp. (electronic) (2006).

[2] A.V. Bobylev, J.A. Carrillo and I.M. Gamba, On some properties of kinetic and hydrodynamic equations for inelastic
interactions, J. Statist. Phys. 98, 743–773 (2000). [Erratum: J. Statist. Phys. 103, 1137–1138 (2001)]

[3] F. Bolley and J.A. Carrillo, Tanaka theorem for inelastic Maxwell models, Comm. Math. Phys. 276, 287–314 (2007).

[4] N. Bournaveas, V. Calvez, S. Gutiérrez and B. Perthame, Global existence for a kinetic model of chemotaxis via dispersion
and Strichartz estimates, Comm. Partial Differential Equations 33, 79–95 (2008).

[5] N. Bournaveas and V. Calvez, Global existence for the kinetic chemotaxis model without pointwise memory effects, and
including internal variables, Kinetic and Related Models 1, 29–48 (2008).

[6] V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in R2, Commun. Math. Sci. 6, 417–447 (2008).

[7] V. Calvez, B. Perthame and M. Sharifi tabar, Modified Keller-Segel system and critical mass for the log interaction kernel,
Stochastic analysis and partial differential equations, 45–62, Contemp. Math. 429, Amer. Math. Soc., Providence, RI,
2007.

[8] F. Castella and B. Perthame, Estimations de Strichartz pour les équations de transport cinétique, C. R. Acad. Sci. Paris
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