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Abstract

We consider a model for the polymerization (fragmentation) process involved in in-
fectious prion self-replication and study both its dynamics and non-zero steady state.
We address several issues. Firstly, we extend a previous study of the nucleated poly-
merization model [16, 17] to take into account size dependent replicative properties of
prion aggregates. This is achieved by a choice of coefficients in the model that are not
constant. Secondly, we show stability results for this steady state for general coefficients
where reduction to a system of differential equations is not possible. We use a duality
method based on recent ideas developed for population models. These results confirm
the potential influence of the amyloid precursor production rate in promoting amyloido-
genic diseases. Finally, we investigate how the converting factor may depend upon the
aggregate size. Besides the confirmation that size-independent parameters are unlikely to
occur, the present study suggests that the PrPsc aggregate size repartition is amongst the
most relevant experimental data to investigate this dependence. In terms of prion strain,
our results indicate that the PrPsc aggregate repartition could be a constraint during
the adaptation mechanism of the species barrier overcoming, that opens experimental
perspectives for prion amyloid polymerization and prion strain investigation.

Key-words: Prion kinetics, polymerization process, size repartition, duality method.

1 Introduction

Transmissible spongiform encephalopathies (TSE) are fatal, infectious, neurodegenerative
diseases. They include bovine spongiform encephalopathies (BSE) in cattle, scrapie in sheep
and Creutzfeldt-Jakob disease (CJD) in human [1]. The infectious agents responsible for
disease transmission, known as prions, present some unusual biological properties (as a high
resistance to inactivation by heat or radiation). According to the ”protein-only hypothesis”,
prions may consist in a misfolded protein (called PrPsc), without any nucleic acid. This
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hypothesis suggests that PrPsc replicates in a self-propagating process, by converting the
normal form of PrP (called PrPc for Prion Protein cellular) into PrPsc (for Prion Protein
scrappie) [2]. Many evidences are in favor of an autocatalytic replication of PrPsc, as the
generation of infectivity from recombinant proteins [3] or the use of in vitro PrPsc conversion
systems, such as the protein misfolding cyclic amplification (PMCA) technique [4].

However, the precise mechanism of conversion remains unclear. Moreover, prion infectious
agent can exist under different strains, characterized by their incubation period and their
lesion profile in brains [5]. In the framework of the protein-only hypothesis, it is supposed
that strain diversity is supported by various conformation states of PrPsc, that leads to
various biological and biochemical properties [6, 7]. A critical challenge of prion biology
consists in elucidating the mechanism of conversion of PrPc into PrPsc, and therefore how a
diversity of strains may exist in the same host (expressing the same PrP molecule).

To investigate the conversion of PrPc in PrPsc, many relevant mathematical modeling of
prion replication have been proposed [8, 9, 10, 11]. Their major aim is to demonstrate that
essential features of prion disease can be explained by purely physico-chemical mechanisms,
as supposed by the protein-only hypothesis. In addition, mathematical modeling allows to
study the effect of every elementary process in a separate manner [12], what is difficult to do
experimentally.

The early proposed model is the heterodimer one. It is based on the conformational
change of PrPc into PrPsc after the formation of a heterodimeric complex (PrPc + PrPsc
→ PrPc*PrPsc → PrPsc*PrPsc → 2 PrPsc). This model does not take into account the
aggregation of PrPsc, and thereby fails to explain the association between infectivity and
aggregated PrP. Some other mechanisms have been proposed, which are interested in PrP
aggregation [9, 10, 13, 14, 15]. Based on fibrilar aggregation, the model which seems by
now broadly accepted is the one of nucleated polymerization [9, 16, 17]. In this approach,
PrPsc is considered to be a polymeric form of PrPc. Polymers can lengthen by addition of
PrPc monomers, and they can replicate by splitting into smaller fragments. Greer et al. [18]
recently improved the model to include a mean saturation effect by the whole population
of polymers onto the lengthening process (called general incidence), and polymer joining
(through a Smoluchowski coagulation equation). Another improvement is proposed in [19]
where an intermediate state of converted PrP is introduced.

In these models, each aggregate has the same replicative behavior regardless to its size
(modelled by constant kinetic parameters). However, some indirect evidences suggest that
this hypothesis could be relaxed. Indeed, PrPsc aggregates are very heterogeneous in mor-
phology: in several preparation conditions, either amorphous, spherical or fibrillar aggregates
have been observed [20, 21, 22]. Moreover, the difficulties to generate infectivity from PrPsc
with pure recombinant PrPc suggest that co-factors are necessary to the conversion mech-
anism of PrPc in infectious PrPsc (for instance, glycosaminoglycans may be important in
the formation or stabilization of PrPsc [23]). A replication rate identical for every aggregate
size, as supposed in previous models, would imply that interactions between PrPsc and other
co-factors are structured-independent. However, it seems unlikely that differently structured
aggregates possess the same biological or biophysical properties. More direct evidences are
also in favor of a non constant behavior. Recent experimental analysis of relation between
infectivity and size distribution of PrPsc aggregates (for PrPsc purified from infected brain
[20] or for PrPsc produced by PMCA [24, 25]) contradicts this uniform behavior of PrPsc
aggregates. For instance, Weber et al. found a bell-shaped-like dependence of infectivity on
particle size in an infectivity assay using N2a cells [25, 26]. Taken together, these considera-
tions suggest that the infectivity of PrPsc aggregates could be dependent on its aggregation
state, i.e. its size in the theoretical systems.

The aim of our study is to generalize previous models to take into account the infectivity
prion size-dependence. In mathematical models, infectivity is a balance between three ele-
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mentary processes (namely fragmentation, degradation/sequestration and polymerization).
Although we cannot exclude a size-dependent stability (assumed as a variable degradation
rate or a variable fragmentation factor for large size), we have made the choice of a non-
constant extension rate. Indeed, conversion activity, which is the most direct measure of our
extension rate, is heterogeneous with regards to prion aggregates size [20, 27]. Furthermore,
the hypothesis of a constant extension rate rests on the fibrillar aspect of PrPsc aggregates
(i.e. polymerization occurs only at two ends of the polymer)[9, 16, 17]. However, so far,
PrPsc-containing fibrils have not been found in infected brain tissues. The brain derived
scrapie-associated fibrils (SAF) and Prion Rods may assemble during homogenization, ex-
traction or purification and thus, be preparation artifacts [28, 29].

Thus, the major goal of the present work is to generalize Masel and coauthors’ model
of nucleated polymerization by taking a non-constant conversion rate, and to investigate
the potential implications of the resulting prion aggregates size distribution in the strain
phenomenon.

The paper is organized as follows: in section 2 we recall and review the model of Masel
et al. and its continuous version [16] which is going to be used. We introduce our main
improvement, namely a size-dependent lengthening factor related to nonuniform infectivity
rate; and we discuss the eigenvalue problem which is a key tool to analyze the model. In
section 3 we prove the stability of the zero steady state in the disease free regime (generalizing
partially a result in [16]). Finally, in section 4 we study numerically the influence of different
parameters on the dynamics of our model, in a prion strain perspective.

2 The continuum model

The following set of coupled differential equations has been introduced by Masel et al. [9] in
order to model the polymerization (aggregation, fragmentation) process involved in infectious
prion self-replication. It describes the dynamics of the quantity of PrPc V (t), coupled with
the evolution of aggregates of PrPsc ui(t) made of i elementary proteins,





d

dt
V (t) = λ− γV (t)− τV (t)U(t) + 2β

n0−1∑

i=1

∑

j>i

iuj(t),

d

dt
ui(t) = −µui(t)− β(i− 1)ui − τV (t)(ui(t)− ui−1(t)) + 2β

∑

j>i

uj(t) , for i ≥ n0 .

(1)
The index n0 denotes the minimal size of PrPsc polymers. The quantity U(t) =

∑
ui(t) is the

total amount of prion aggregates. The constant parameters λ, γ, τ, β, µ are, respectively, the
basal synthesis rate of PrPc, the degradation rate of PrPc, the conversion rate of PrPc into
PrPsc (autocatalytic process following the mass action law), the fragmentation coefficient,
and the degradation rate of PrPsc.

Analysis is simpler in the framework of continuous size of prions because analytical tools
can serve to find simpler formulations. Accordingly, Greer et al. [16] introduce a continuous
version of the discrete system (1) where they use the variable x ∈ (0,+∞) to denote the
size of aggregates instead of the index i ∈ N. This procedure can be justified by asymptotic
derivations of continuous models from discrete models, see [30, 31]. The continuous model
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reads, with possibly nonconstant coefficients,





d

dt
V (t) = λ− V (t)

(
γ +

∫ ∞

x0

τ(x)u(x, t) dx

)
+ 2

∫ x0

0
x

∫ ∞

x
β(y)κ(x, y) u(y, t) dy dx,

∂

∂t
u(x, t) = −V (t)

∂

∂x
(τ(x)u(x, t))− [µ(x) + β(x)]u(x, t) + 2

∫ ∞

x
β(y)κ(x, y) u(y, t) dy,

u(x0, t) = 0,
(2)

together with appropriate initial conditions (e.g. V0 = λ/γ, and u0(x) is a non-negative
perturbation of the zero state) and with u(x, t) = 0 for x ≤ x0. This is a well established
family of models used for describing aggregation, fragmentation and possibly coagulation in
polymer dynamics. It also appears in size structured cell dynamics with finite resources [32,
33, 34, 35]. Well-posedness, in the class of weak solutions, has been addressed by [36, 37, 38].
A general introduction to methods related to this type of model can be found in [39].

The transport term V (t) ∂
∂x(τ(x)u(x, t)) accounts for the growth in size of polymers by

aggregation of converted normal proteins. Their size increases with the (extension) rate
V (t)τ(x), proportional to the available PrPc molecules V (t), with a conversion ability τ(x)
depending on the size of the polymer according to the experimental evidences presented in
the introduction. The fragmentation rate for a polymer of size y, is β(y) > 0. The repartition
of the two fragments of (smaller) sizes x and y − x is given by κ(x, y) ≥ 0. It should thus
satisfy the two usual laws [19, 33, 40] expressing that the number of fragments increases but
keeping the total molecular mass unchanged (recall the factor 2 in the right hand side of (2))

∫ y

0
κ(x, y)dx = 1 ,

∫ y

0
xκ(x, y)dx =

y

2
. (3)

We may incorporate a minimal size of infectious PrPsc aggregates x0 ≥ 0, whose value
remains unknown. Experimentally, no monomer of PrPsc has been isolated yet. In addition,
small aggregates have been shown not to be infectious [20] (even-though they have to enter
the actual modeling) and thus the assumption of a critical size of nucleation x0 has been
emphasized. However, the continuous model holds under the assumption that the monomer
size can be neglected as opposed to possibly numerous large polymers (such that x0 ' 0).
Therefore we keep x0 ≥ 0 in the following but we sometimes neglect it (x0 = 0) in order to
simplify the presentation.

The system (2) keeps an important biochemical property: the prion molecules are properly
transfered from one configuration to another (inducing no loss of mass during fragmentation
or polymerization). This enhances the following macroscopic laws involving the total quantity
of polymers U(t) and the total mass of PrPsc fixed by the polymers P (t) defined as

U(t) =
∫ ∞

x0

u(x, t)dx P (t) =
∫ ∞

x0

xu(x, t)dx. (4)

In fact, using assumption (3), equation (2) yields the balance laws,

d

dt
U(t) =

∫ ∞

0
[β(x)− µ(x)]u(x, t) dx (in the case x0 = 0),

d

dt

(
V (t) + P (t)

)
= λ− γV (t)−

∫ ∞

x0

xµ(x)u(x, t) dx , (5)

which asserts that the only possible creation or loss of PrP is due to the dynamics of PrPc
(net production+degradation) and the natural sequestration of PrPsc.
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General assumptions on the coefficients. In its entire generality, model (2) is rather
difficult to attack even though some qualitative behaviors can be described as in section
3. We aim to reduce the complexity of this system in order to extract some relevant in-
formations and concentrate on the conversion rate τ(x) for reasons mentioned earlier. At
this stage of knowledge of the biochemical process, the available microscopic experimental
data are insufficient to investigate different fragmentation laws in details. Indeed, we are
not able to dissociate the three elementary processes (degradation/sequestration, splitting
and polymerization) implicated in prion replication. We have made the choice of varying the
conversion rate τ(x) as a first step, whereas Silveira et al. [20] clearly indicate that large
polymers are more stable than small ones (this could be assumed as a reduced degradation
rate or a saturated fragmentation factor for large sizes).

We recall a simple but natural choice for the coefficients, following [16]: the fragmentation
rate is assumed to be proportional to the fragment size and the degradation rate does not
depend of the size, that is,

β(x) = β0x , µ(x) ≡ µ0 , (6)

and the probability distribution of fragments of size x is chosen to be uniform with respect
to the length of the split polymers of size y:

κ(x, y) =

{
0 if y ≤ x0 or y ≤ x

1/y if y > x0 and 0 < x < y.
(7)

Last, but not least, the conversion rate τ(x) may also be assumed to be constant:

τ(x) ≡ τ0. (8)

In this situation the stable distribution of aggregates, as well as the possible asymptotic
behaviors have been completely classified [9, 16] (see the last paragraph of this section). We
refer to this choice (6)–(8) as the constant coefficients case.

With respect to previous modeling studies [9, 16], the main purpose of our work is to take
into account more general assumptions for the coefficients. We explain how steady states
can be obtained, and we partially analyze their stability properties. For the discussion, we
focus on the case where only the conversion rate τ(x) differs from the “constant coefficients
case”. We try to foresee consequences in terms of qualitative behavior: which stable size
distributions can be reached? What specific features do the dynamics exhibit? what are the
possible biological interpretations?

A related eigenvalue problem. When V is frozen, it is convenient to introduce the
aggregation/fragmentation operator

LVu (x) := V
∂

∂x

(
τ(x)u(x)

)
+ (µ(x) + β(x))u(x)− 2

∫ ∞

x
β(y)κ(x, y) u(y) dy .

It has a dominant eigenvalue Λ(V) (the opposite of the growth rate, also named negative
fitness referring to population dynamics), associated to a nonnegative eigenfunction. In other
words there is a unique solution U(V;x) to






LVU(V; .) (x) = Λ(V)U(V;x) ,

U(V;x0) = 0 , U(V;x) ≥ 0 ,

∫ ∞

x0

U(V;x) dx = 1 .
(9)

Such solutions have been shown to exist, and the integrability condition implies an exponential
decay at infinity, see [33, 34, 41].
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These eigenelements help to give the qualitative behavior of the linear equation

∂

∂t
u(x, t) + LVu = 0 .

It has been thoroughly studied using the Generalized Relative Entropy (GRE) method (see
[33] and references therein). In a short, the distribution u(x, t) tends to align along the
dominant eigenfunction U(V;x) up to an exponential rescaling by the negative growth rate.
It is proved that the time asymptotic regime is u(x, t) ≈ ' exp(−Λ(V )t)U(V;x) with ' a
factor depending on the initial data. We refer to this regime as the ”exponential phase”.

We can derive a useful formula for the eigenvalue Λ(V). The decay conditions at infinity
ensure that the following integrations-by-parts can be justified (we assume x0 = 0 below).
Integrating (9) successively against 1 and x, gives
∫ ∞

0
(µ(x) + β(x))U(V;x) dx− 2

∫ ∞

0

∫ ∞

x
β(y)κ(x, y)U(V; y) dy dx = Λ(V)

∫ ∞

0
U(V;x) dx ,

−V
∫ ∞

0
τ(x)U(V;x) dx +

∫ ∞

0
(xµ(x) + xβ(x))U(V;x) dx

− 2
∫ ∞

0
x

∫ ∞

x
β(y)κ(x, y)U(V; y) dy dx = Λ(V)

∫ ∞

0
xU(V;x) dx .

Using (3) we obtain as a direct consequence,

Λ(V) =
∫ ∞

0
(µ(x)− β(x))U(V;x) dx =

−V
∫ ∞

0
τ(x)U(V;x) dx +

∫ ∞

0
xµ(x)U(V;x) dx

∫ ∞

0
xU(V;x) dx

.

(10)

Discussion of the possible equilibria and corresponding dynamics. As pointed out
already by [16], there are in general two steady states of the dynamics driven by (2). The
first equilibrium is disease free, and we refer to it as the ’zero steady state’:

V =
λ

γ
, u ≡ 0 . (11)

As stressed in the setting of (2), we consider in general initial data which are close to this
non-infected state. This results in an exponential phase after some transitory regime, the
”pre-exponential phase”. Indeed the linearized system around (V , 0) writes as follows (for
x0 = 0 and Ṽ (t) = V (t)− V ),






d

dt
Ṽ = −γṼ − V

∫ ∞

0
τ(x)u(x, t) dx + higher order terms ,

∂

∂t
u(x, t) = −LV u + h.o.t. .

(12)

Due to the particular triangular form of the linearized problem, the principal eigenvalue Λ(V )
drives the growth of the system. It is thus a crucial quantity in order to get a qualitative
picture of the system: is the disease free state stable or unstable (see Section 3)? What is the
speed of the infection at early times (see Section 4 and Figure 3)? The early stages of infection
are highly relevant biologically, because the observable quantities seem to be measured at the
very beginning of the infection after inoculation. Discussing the biological implications of the
current modeling (Section 4), we shall always assume we remain in the pre-exponential and
exponential phases even though the full non-linear dynamics can be much more intricate.
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Figure 1: Eigenvalue problem for the microscopic distribution. (top) Princi-
pal eigenfunction U(V; ·) solution of the problem (9) for respectively, a constant, a bell-
shaped and a sigmoidal conversion factor τ(x). The arrow indicates the location of the
sharp transition in the conversion factor τ(x). (middle) Corresponding adjoint eigenfunction
ϕ(V; ·) solution of the problem (19). Notice that it is in any case an increasing function,
as assumed in Section 3. (bottom) Principal eigenvalue Λ(·) as a function of the PrPc
(frozen) level V. Observe that it is in any case a decreasing function, as assumed in Sec-
tion 3. Coefficients are µ(x) ≡ 5.10−2, β(x) = 3.10−2x, and respectively, τ(x) ≡ 1.10−2,
τ(x) = 1.10−2 + 1.10−1e−(x−10)2/4 and τ(x) = 1.10−3 + 5.10−2ex−10/(1 + ex−10). For the top
and middle figures we set V = V = 600. Values are quoted from [12].
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As we are also interested in long-time dynamics resulting in a balance between polymer-
ization and fragmentation, we stress that another steady state (V∞, u∞) is possible for the
system (2), being non trivial and satisfying:






V∞

(
γ +

∫ ∞

x0

τ(x)u∞(x) dx

)
= λ + 2

∫ x0

0
x

∫ ∞

x
β(y)κ(x, y) u∞(y) dy dx ,

V∞
d

dx
(τ(x)u∞(x)) + (µ(x) + β(x))u∞(x) = 2

∫ ∞

x
β(y)κ(x, y) u∞(y) dy ,

(13)

with sufficient decay conditions at infinity. This nontrivial equilibrium (u∞ *≡ 0) corresponds
to the infection regime, and can be understood as follows. The equilibrium distribution
u∞ arises as an eigenfunction associated to the eigenvalue Λ(V∞) = 0 (9). In fact, this
characterizes both the level of PrPc (V∞) and the shape of the polymer distribution U(V∞;x).
The complete description of the steady-state relies on knowing the total number of polymers.
This missing factor is determined thanks to the first equation of (13). Interestingly enough,
the value V∞ does not depend on the differential equation driving V (t). In particular it does
not depend on λ and γ.

Consider the case x0 = 0 for simplicity. The infectious steady state is given according to
the rule:

Λ(V∞) = 0 , u∞(x) = '∞U(V∞;x) , (14)

where '∞ denotes the total number of polymers. Such a steady state does not always exist
[16]. In fact, according to the first equation of system (13), we have

V∞

(
γ + '∞

∫
τ(x)U(V∞;x) dx

)
= λ ,

or, equivalently

'∞ =
λV −1

∞ − γ∫
τ(x)U(V∞;x) dx

> 0 .

This points out a constraint for the non trivial steady state (V∞, u∞) to exist, namely it is
required that

γV∞ < λ , (equivalently V∞ < V ) . (15)

The stability of these steady states is one of the issues we address later.

The case of constant coefficients. For ”constant coefficients” (6–8), the stability has
been fully analyzed in [16, 17] and the situation is rather simple. As soon as the nontrivial
equilibrium (V∞, u∞) exists, it is stable. Otherwise the disease free equilibrium is stable. This
argument relies on the reduction of the infinite dimensional system to a three dimensional
ordinary differential system on (U,P, V ) due to remarkable cancellations.

We have the opportunity to recall their results under the viewpoint of the eigenvalue Λ(·)
in (9). This eigenvalue can be explicitly computed from (10) which yields,

Λ(V) = µ0 − β0

∫ ∞

0
xU(V;x) dx =

−τ0V + µ0

∫ ∞

0
xU(V;x) dx

∫ ∞

0
xU(V;x) dx

.

Eliminating the quantity
∫∞
0 xU(V;x)dx =

√
τ0V/β0, we obtain

Λ(V) = µ0 −
√

τ0β0V . (16)

Notice that it is a decreasing function of V (this property is in fact crucial in the subsequent
analysis).
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We recover that the non-zero steady state corresponds to V∞ = µ2
0/(τ0β0) and, following

the constraint (15), it exists if and only if γµ2
0 < λτ0β0. Then, the mean length of polymers

is simply given: ∫ ∞

0
xu∞(x) dx

∫ ∞

0
u∞(x) dx

=
µ0

β0
. (17)

From [16], we know that it is globally asymptotically stable. On the contrary, when it does
not exist, the zero steady state is globally asymptotically stable.

3 Stability

We have seen previously that there are two possible steady states of the nonlinear system (2),
setting the alternative between a disease free and an infected system and depending upon
the prion production and degradation rates λ, γ. For “constant coefficients”, Greer et al.
[16] could study their stability using the possible reduction of the system to three coupled
ordinary differential equations driving the macroscopic quantities (V (t), U(t), P (t)). Below
we investigate the same question for more general coefficients. Our main assumption is the
monotonicity property of the eigenvalue (9) which has been discussed above. This assumption
is expected to be satisfied fairly generally (see Figure 1). We give in Subsection 3.3 below a
class of coefficients for which we can indeed compute the eigenvalue and show that it is indeed
decreasing. We set x0 = 0 for the sake of simplicity throughout this section and assume

The eigenvalue Λ(·) is a decreasing function of the (frozen) PrPc level V. (18)

The adjoint problem. It emerges from the Generalized Relative Entropy method that
the adjoint eigenvalue problem plays a central role when computing evolution of linearized
problems, e.g., it defines the invariant measure of equation [33, 35]. As such it enters as a
natural weight for various estimates. This problem reads as the following adjoint equation
for the adjoint eigenfunction ϕ(V, x),





−Vτ(x)
∂

∂x
ϕ(V;x) + (µ(x) + β(x))ϕ(V;x)− 2

∫ x

0
β(x)κ(y, x)ϕ(V; y) dy = Λ(V)ϕ(V;x) ,

ϕ(V;x) ≥ 0 ,

∫ ∞

0
U(V;x)ϕ(V;x) dx = 1 .

(19)
The existence theory for such a problem has been addressed in [35] and we do not consider

the question of existence problem. We state a series of useful (and reasonable) assumptions
concerning this adjoint problem for computing purposes. Recall the notation V = λ/γ for
the PrPc level at the disease free state (11). Recall also that the PrPc level at the conditional
infected steady state, denoted as V∞, is defined by Λ(V∞) = 0 according to (14). We denote
ϕ = ϕ(V ; ·) and assume that there are two constants K1 and K2 such that

∣∣∣∣τ(x)
∂

∂x
ϕ(x)

∣∣∣∣ ≤ K1ϕ(x) , and τ(x) ≤ K2ϕ(x) . (20)

This assumption generally holds true because ϕ grows linearly at infinity according to gen-
eral abstract properties proved in [33, 35, 41]. See Figure 1 and Subsection 3.3 for explicit
examples.
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3.1 Stability of the zero state for V < V∞

We first tackle the stability of the disease free steady state.

Theorem 1 (Local stability). Suppose that assumptions (18) and (20) hold true. Assume
that V < V∞. Then, in equation (2), the zero steady state (V , 0) is locally nonlinearly stable.

We recall that in the case at hand (V < V∞), there does not exist a non-zero steady state
because (15) cannot be fulfilled with '∞ > 0.

Proof. According to Assumption (18), the condition V < V∞ ensures that Λ(V ) > 0. We
consider a perturbation of the ground state V (t) = V + Ṽ (t) and u(x, t) = 0 + ũ(x, t) (note
that ũ is nonnegative following the well-posedness theory in [36, 37], whereas we have no
information concerning the sign of Ṽ a priori).

Because V = λ/γ, the nonlinear system for this perturbation writes





d

dt
Ṽ (t) = −Ṽ (t)

(
γ +

∫ ∞

0
τ(x)ũ(x, t) dx

)
− V

∫ ∞

0
τ(x)ũ(x, t) dx ,

∂

∂t
ũ(x, t) = −V

∂

∂x
(τ(x)ũ(x, t))− Ṽ (t)

∂

∂x
(τ(x)ũ(x, t))− (µ(x) + β(x))ũ(x, t)

+2
∫ ∞

x
β(y)κ(x, y)ũ(y, t) dy .

(21)

Following the duality method in [42], we test the equation on ũ in (21) against the adjoint
eigenfunction ϕ:

d

dt

∫ ∞

0
ũ(x, t)ϕ(x) dx = −Λ(V )

∫ ∞

0
ũ(x, t)ϕ(x) dx + Ṽ (t)

∫ ∞

0

(
∂

∂x
ϕ(x)

)
τ(x)ũ(x, t) dx .

On the other hand, multiplying the first differential equation in (21) by the sign of Ṽ , we
get:

d

dt
|Ṽ (t)| ≤ −|Ṽ (t)|

(
γ +

∫ ∞

0
τ(x)ũ(x, t) dx

)
+ V

∫ ∞

0
τ(x)ũ(x, t) dx .

We obtain, choosing α large enough such that δ := Λ(V )−K2V /α > 0,

d

dt

(
α

∫ ∞

0
ũ(x, t)ϕ(x) dx + |Ṽ (t)|

)

≤ −αΛ(V )
∫ ∞

0
ũ(x, t)ϕ(x) dx + αK1|Ṽ (t)|

∫ ∞

0
ũ(x, t)ϕ(x) dx

− γ|Ṽ (t)|−| Ṽ (t)|
∫ ∞

0
τ(x)ũ(x) + K2V

∫ ∞

0
ũ(x, t)ϕ(x) dx

≤ −min
(

Λ(V )− K2V

α
, γ

) (
α

∫ ∞

0
ũ(x, t)ϕ(x) dx + |Ṽ (t)|

)
+ αK1|Ṽ (t)|

∫ ∞

0
ũ(x, t)ϕ(x) dx

≤ −min(δ, γ)
(

α

∫ ∞

0
ũ(x, t)ϕ(x) dx + |Ṽ (t)|

)
+

K1

2

(
α

∫ ∞

0
ũ(x, t)ϕ(x) dx + |Ṽ (t)|

)2

.

From this differential equation we conclude that, when α
∫∞
0 ũ(x, t)ϕ(x)dx+ |Ṽ (t)| is initially

small enough, then the right hand side is negative. Therefore it decays for all times with the
asymptotic exponential rate

(
α

∫ ∞

0
ũ(x, t)ϕ(x) dx + |Ṽ (t)|

)
≤ Cεe

−
(
min(δ, γ)− ε

)
t ∀ε > 0 .
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We can also state the following variant of Theorem 1 under stronger assumptions.

Theorem 2 (Global stability). Additionally to the hypotheses of Theorem 1, assume that
τ(x) ≥ kϕ(x) for some constant k > 0 and that V /Λ(V ) is small enough compared to
k/(K1K2). Then, in equation (2), the zero steady state (V , 0) is globally nonlinearly sta-
ble. In other words all solutions get extinct.

As opposed to those of Theorem 1, the assumptions of Theorem 2 are difficult to check
directly because the coefficients are intricate here. They mean that we are close to the case
µ(x) ≡ µ0, β(x) ≡ β1 and τ(x) ≡ τ0 because ϕ is constant in this case and therefore we can
choose K1 = 0 in Assumption (20) (see Subsection 3.3).

Proof. With these additional assumptions, we may keep one negative term in the last com-
putation and arrive to,

d

dt

(
α

∫ ∞

0
ũ(x, t)ϕ(x) dx + |Ṽ (t)|

)

≤ −αΛ(V )
∫ ∞

0
ũ(x, t)ϕ(x) dx + αK1|Ṽ (t)(t)|

∫ ∞

0
ũ(x, t)ϕ(x) dx

− γ|Ṽ (t)|−| Ṽ (t)|
∫ ∞

0
τ(x)ũ(x, t) + K2V

∫ ∞

0
ũ(x, t)ϕ(x) dx

≤ −min
(

Λ(V )− K2V

α
, γ

) (
α

∫ ∞

0
ũ(x, t)ϕ(x) dx + |Ṽ (t)|

)
+ (αK1 − k)|Ṽ (t)|

∫ ∞

0
ũ(x, t)ϕ(x) dx

≤ −min
(

Λ(V )− K2V

α
, γ

) (
α

∫ ∞

0
ũ(x, t)ϕ(x) dx + |Ṽ (t)|

)
.

This last inequality will hold if we can find α > K2V /Λ(V ) such that αK1 < k, which is
precisely our smallness assumption. Then we have exponential decay of the solution.

3.2 Persistence for V > V∞

The same kind of method allows us to study the opposite case when another steady state
exists. In this case we prove that the solution cannot go extinct using an argument initiated
in [42]. We have the

Theorem 3 (Instability, persistence). Suppose again that assumptions (18) and (20) hold
true. Assume that V∞ < V . Then the zero steady state (V , 0) is unstable in the sense that
solutions cannot stay near (V , 0) for long times.
Assume in addition that K1V < Λ(V )+γ and that the initial perturbation satisfies V (0) ≤ V ,
then the solution persists: namely V stays away V and

∫∞
0 u(t, x)dx stays away from 0

uniformly in time.

Proof. We use the notations v(t) = V − V (t) and w(t) =
∫∞
0 u(x, t)ϕ(x)dx and the assump-

tion V∞ < V leads to Λ(V ) < 0.

To prove the first statement, we introduce ε0 such that

2K1K2ε0V

γ + K2ε0
≤ |Λ(V )| . (22)

We shall prove that the subset

Sε =
{

(V, u) : |V − V | <
K2εV

γ + K2ε
and

∫ ∞

0
u(x)ϕ(x)dx < ε

}

11



is not stabilized accross the trajectories of (2) for any ε <ε 0. Following the proof of Theorem
1, we have on the one hand

d

dt
v(t) + γv(t) = V (t)

∫ ∞

0
τ(x)u(x, t) dx , (23)

0 ≤
∫ ∞

0
τ(x)u(x, t) dx ≤ K2w(t) .

Consequently, for trajectories that remain in the set Sε on the time interval [t0, t], we obtain
the following estimate

0 ≤ d

dt
v(t) + γv(t) ≤ −K2εv(t) + K2εV ,

and thus

v(t0)e−γ(t−t0) ≤ v(t) ≤ v(t0)e−(γ+K2ε)(t−t0) +
K2εV

γ + K2ε
, |v(t)| <

2K2εV

γ + K2ε
.

On the other hand, we can again combine the equation (19) defining the adjoint eigenfunction
ϕ and the equation in (2) driving u, to obtain

d

dt
w(t) = −v(t)

∫ ∞

0
τ(x)

∂

∂x
ϕ(x) u(x, t) dx + |Λ(V )|w(t)

≥ −K1|v(t)|w(t) + |Λ(V )|w(t) (24)

≥
(
−2K1K2εV

γ + K2ε
+ |Λ(V )|

)
w(t)

≥ 2K1K2V

(
ε0

γ + K2ε0
− ε

γ + K2ε

)
w(t) .

Consequently, for ε <ε 0, the exponential growth induced by the differential inequality shows
there is no way to ensure the condition

∫∞
0 u(x, t)ϕ(x)dx < ε for long time intervals. This

proves the first statement.

In order to prove persistence of the solution, first examine (23): from the additional
condition V (0) ≤ V we obtain that v(t) > 0 for all positive times. We can rewrite (23) and
(24) as 





d

dt
v(t) ≤ −γv(t) + K2V w(t) ,

d

dt
w(t) ≥ [−K1v(t) + |Λ(V )|]w(t) .

Introduce the notation δ = Λ(V ) + γ −K1V > 0. We compute the evolution of the ration
between v and w:

d

dt

(
w(t)
v(t)

)
≥ w(t)

v(t)

(
−K1v(t) + |Λ(V )| + γ −K2V

w(t)
v(t)

)

≥ w(t)
v(t)

(
δ −K2V

w(t)
v(t)

)
,

from which we deduce the uniform bound from below: w(t)/v(t) ≥ min(w(0)/v(0), δ/(K2V )).
Notice that w(t) lies asymptotically above δ/V . Consequently we have,

d

dt
w(t) ≥ w(t)

(
|Λ(V )|− K1

min(w(0)/v(0), δ/(K2V ))
w(t)

)
,

w(t) ≥ min
(

w(0),
|Λ(V )|min(w(0)/v(0), δ/(K2V ))

K1

)
.

Therefore the initial perturbation persists away from the disease-free stationary state.
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3.3 A class of examples

In order to clarify the assumptions and properties stated before, we give a class of coefficients
in equation (2) where the different eigenelements can be explicitly computed. In each case
we will see that Λ(V) is indeed a decreasing function of V (Assumption (18)), and that
Assumption (20) reduces to the fact that τ(x) is bounded.

We first report from [33, 41] the case where τ(x) ≡ τ0, µ(x) ≡ µ0 and β(x) ≡ β1 are
constants. We obtain the solution to the adjoint problem (19),

Λ(V) = β1 , ϕ(V;x) ≡ 1 .

The eigenlements are usually difficult to evaluate in the direct problem (9) but can
be easily computed in the adjoint equation (19). Indeed, searching for an affine solution
ϕ(V;x) = 1 + x/L, we find, using the structure properties of κ(x, y) (3),

−Vτ(x)
L

+ µ(x)
(
1 +

x

L

)
− β(x) = Λ(V)

(
1 +

x

L

)
. (25)

Hence another class where one can compute Λ(V ) corresponds to β(x) = β0 x, and τ(x) ≡ τ0,
µ(x) ≡ µ0 are constant (the “constant coefficients case”). We get first

−β0L
2 + τ0 V = 0 .

Therefore we obtain L(V) =
√

τ0V/β0 and Λ(V) = µ0 − β0L(V) , as in Section 2. Observe
that Λ(V) is a decreasing function of V as asserted in Assumption (18).

We leave to the reader to check that Λ(V) is also decreasing for the more general situation
where β(x) = β1 + β0x, τ(x) = τ0 + τ1x and µ(x) ≡ µ0 is constant. Indeed we deduce from
(25) the following two relations:

Λ(V)− µ0 +
Vτ0

L
+ β1 = 0 , and

Λ(V)− µ0

L
+

Vτ1

L
+ β0 = 0 .

And thus Z = Λ(V)− µ0 solves

(Z + β1)(Z + Vτ1) = Vτ0β0 , Z + β1 , Z + Vτ1 < 0 ,

the last constraint being due to the condition L > 0.
More generally, observe from (10) that the following conditions are fulfilled:

Λ(0) = µ0 , Λ(V) ≤ µ0 .

Notice that the problem for V = 0 is degenerate and that the eigenfunction is singular at
x = 0 [32].

On the other hand, we deduce for the same reason that, if min τ(x)/x > 0, then we have

Λ(∞) = −∞ .

Consequently there exists at least one non-zero steady state.

4 Non-constant conversion rate and PrPsc aggregate size-distribution

The microscopic parameters of the model are quite difficult to assess experimentally, whereas
the macroscopic outputs of our model (i.e. namely the kinetics of PrPsc accumulation or the
PrPsc aggregate repartition according to their size) can be obtained more easily. We aim to
gain some insight into reasonable scenarios for the converting activity through a macroscopic
procedure. In particular we aim to understand how the conversion factor τ(x) may depend
upon the aggregate size. This question is fully motivated by recent studies which clearly
account for such an influence of the polymer length [20, 27]. Since the actual size distribution
of the conversion factor τ(x) is still unknown, several size dependences have been tested and
are depicted in Figure 2.
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Figure 2: Prion replication for various size-dependent conversion rate τ(x). Three differ-
ent shapes are depicted here : (A) a constant conversion rate τ = 0.01, (B) a bell-shaped
conversion rate τ = 0.01 + exp(−0.5 ∗ (x − 10)2) and (C) a sigmoidal conversion rate
τ = 0.0001+0.02∗ (1+1/(10−2)∗ (2∗exp(−x/2)−10∗exp(−x/10))), where x stands for ag-
gregate size. The other parameters are kept constant and have been quoted from Rubenstein
et al. [12] : λ = 2400 per day, γ = 4 per day, µ = .047 per day, and β = 0.03∗x per day. (A1,
B1, C1) Size distribution of τ (abscissa = PrPsc aggregates size; ordinate = rate τ). (A2, B2,
C2) Time evolution of total PrPsc amount (abscissa = Time (in days) ; ordinate = PrPsc
(per day). The arrow represents time t=25 days, the end of the exponential phase of growth
of PrPsc. (A3, B3, C3) PrPsc aggregates size distribution at equilibrium. (abscissa = PrPsc
aggregates size; ordinate = PrPsc aggregates number). (A4, B4, C4) PrPsc aggregates size
distribution at t=25 days.(abscissa = PrPsc aggregates size; ordinate = PrPsc aggregates
number).
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4.1 Total PrPsc accumulation

First, we can observe in Figure 2 that for a given initial PrPsc aggregate size, kinetic PrPsc
accumulation profiles (i.e. P (t)) are similar, and thus, cannot be used to distinguish between
a constant, a bell-shaped or a sigmoidal conversion factor τ(x) (all the other coefficients
remaining equal).

We have also load the evolution problem (2) with a very peculiar initial condition being
localized at a given length y0, with a normalized quantity of PrPsc. The total amount of PrPsc
obtained in a fixed time is depicted in Figure 3. This procedure mimics the experimental
protocol used in [20] to study the size distribution of converting activity.

In case of a conversion factor τ(x) ≡ τ0 independent of the aggregate size, the guess is
simple: the more numerous are the polymers (that is the smaller is the common length y0),
the more efficient is the infection at the early stage (in the pre-exponential phase). When
increasing y0 (the total mass of PrPsc being fixed), it takes some time to fragment large
aggregates into smaller ones, and the dynamics are delayed before the eventual alignment
along the principal eigenfunction (in the exponential phase). This can be viewed in Figure 3
(left).

However in case of a sigmoidal conversion factor, the qualitative behavior is dramatically
different. When increasing the initial aggregates’ size, the infection goes through a maximal
efficiency for an intermediate length (Figure 3). This is due to the inhomogeneous converting
activity: it balances the disadvantage of having less but larger polymers (the total mass of
PrPsc being fixed). In case of a bell shaped conversion factor, one can also observe such a
qualitative behavior, to a less extent (data not shown). These data strongly resemble to those
obtained experimentally in [20], and confirm that a constant extension rate seems unlikely to
occur.

4.2 PrPsc size-distribution

Direct numerical simulations show that the PrPsc size-distribution is mainly affected by a
non-constant conversion rate τ(x) (at the equilibrium as in the exponential growth, see Figure
2), a fact that cannot be observed on the accumulation profiles. Therefore, we analyze how
it is possible to extract information from the size distribution.

A differential formulation. Recall from Section 2 that the infected steady state (V∞, u∞)
is realized as the principal eigenfunction corresponding to the unique root of Λ(·). In this
paragraph we present an alternative (simpler) formulation of the stationary problem (13),
based on a second order differential equation. Note that we strongly use the peculiar choice
for the fragmentation kernel κ(x, y) (7).

Differentiating the equation for the microscopic distribution (13) we obtain,

V∞
d2

dx2
(τ(x)u∞(x)) +

d

dx
((µ(x) + β(x))u∞(x)) =

d

dx

(
2

∫ ∞

x
β(y)

1
y
u∞(y) dy

)
,

V∞
d2

dx2
(τ(x)u∞(x)) +

d

dx
((µ(x) + β(x))u∞(x)) + 2

β(x)
x

u∞(x) = 0 . (26)

This differential equation is complemented by the boundary conditions,

u∞(x0) = 0 , V∞
d

dx

∣∣∣
x=x0

(τ(x)u∞(x)) = 2
∫ ∞

x0

β(y)
y

u∞(y) dy . (27)

The first order initial condition can be replaced by sufficient decay conditions at infinity (for
instance, one moment is required for the distribution u∞(x), at least). The problem (26–27)
is linear with respect to u∞: the missing factor '∞ (namely the total number of polymers)
is determined using the first equation of (13), as in Section 2.
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Figure 3: In silico experiments to capture the features of the conversion fac-
tor. (top) We report the quantity of PrPsc for a reference time t∗ in the exponential phase
(“level of infection”), as a function of the initial aggregate size (in the numerical experiments,
all polymers have the same length initially, for a normalized total mass of PrPsc). (left) In
case of a constant conversion rate τ(x) ≡ 1.10−2, this illustrates the delay in the infection
dynamics that occurs when increasing initial size. (right) In case of a sigmoidal conversion
rate τ(x) = 1.10−3 + 5.10−2ex−10/(1 + ex−10), the dynamics reach a maximal efficiency for
intermediate sizes. (bottom) Time evolution of the total mass of PrPsc (log scale) for three
different sizes of initial aggregates corresponding to the two preceding scenarios: y0 = 1 (full
line), y0 = 8 (dashed line), y0 = 16 (dash-dotted line). One clearly distinguishes the different
phases: pre-exponential phase (dynamics of the linearized system (12)), exponential phase
(microscopic distribution aligned along the principal eigenfunction). . . The fragmentation rate
is β(x) ≡ 3.10−2x and the degradation rate is µ(x) ≡ 0 to avoid the artifact of large aggre-
gates being rapidly degraded (in fact this is a minor effect: one can choose µ(x) ≡ 5.10−2,
data not shown).
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The advantages of the differential reformulation (26) are two-folds. Firstly it provides
a more efficient numerical scheme to compute the stationary distribution u∞ because it
avoids convolutions. Secondly, it dramatically simplifies the inverse problem (computing the
conversion factor τ(x) from the knowledge of the distribution u∞). According to (13), one
should evaluate the eigenvalue function Λ(·), and find the root V∞ (for example using a
robust dichotomy method, based on the decreasing property of Λ(·)). Alternatively, one can
perform a shooting method to solve (26), matching the required decay at infinity for instance.
On the other hand the inverse problem which consists in finding τ(x) from the stationary
distribution u∞(x) (given the other coefficients V∞, µ(x) and β(x)) can be solved explicitly,
integrating twice (26). However, one shall take care of the decay conditions at infinity when
integrating by parts.

In some particular situations, simple mathematical considerations based on the reformula-
tion (26) allow us to deduce some qualitative information relating the microscopic distribution
and the conversion factor τ(x). In this paragraph we assume µ(x) ≡ µ0 and β(x) = β0x for
the sake of clarity.

The second order formulation (26) is reminiscent of the standard one-dimensional Fokker-
Planck equation. In fact, if we drop the last term of order 0, it becomes

V∞
d

dx

(
τ(x)

d

dx
v(x)

)
+

d

dx

(
v(x)

d

dx
ψ(x)

)
= 0 ,

where v denotes the unknown (instead of u∞ to avoid confusions). This accounts for an
inhomogeneous diffusion with an effective confinement potential given by ψ(x) = V∞τ(x) +
µ0x + 1

2β0x2 and its solution is v(x) = v0eφ(x) with φ′(x) = −ψ′(x)/(V∞τ(x)). In the case of
a sharp bell function τ(x) one can clearly see the splitting effect of the “potential” τ(x) in
comparison to the ”constant coefficients case” which reduces to a gaussian distribution: the
natural expectation is thus a bimodal distribution.

We can go further and find necessary conditions on τ leading to a bimodal microscopic
distribution u∞, i.e. the distribution has two peaks, as in Figure 1 (top)). We evaluate the
derivatives in the microscopic equilibrium equation (26),

V∞

(
τ(x)

d2

dx2
u∞(x) + 2

d

dx
τ(x)

d

dx
u∞(x) +

d2

dx2
τ(x)u∞(x)

)
+ µ0

d

dx
u∞(x) + β0x

d

dx
u∞(x)

= −3β0u∞(x) .

A bimodal size distribution u∞ possesses a critical point x∗ where it is convex. Evaluating
above expression at x∗ leads to V∞τxx(x∗)u∞(x∗) < −3β0u∞(x∗). A necessary condition on
τ(x) for the existence of such a critical point is therefore

inf
x>0

V∞
d2

dx2
τ(x) < −3β0 .

It is rather intricate because V∞ itself depends on τ(x). But it gives a first insight of the
desirable conditions, meaning that τ(x) should have a peak which is concave enough.

4.3 Size distribution and strain adaptation

The analysis performed above is mainly interested in long-time dynamics resulting in an
equilibrium. However, during the time course of incubation period and clinical stage of
prion diseases, PrPsc accumulation in brain seems to follow an exponential dynamic until the
death. Consequently, we focus here on the dynamic of PrPsc size distribution in the early
stages of the polymerization process named ’exponential phase’. As mentioned in Section
2, for a given level of V, we expect that the PrPsc size distribution tends to align along
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the eigenfunction U(V;x) (the ”exponential phase”). But when the initial distribution of
polymers is not proportional to this eigenfunction, it induces some delay for this distribution
to reach the appropriate shape, which slows down the process of prion accumulation (the
”pre-exponential phase”).

This property is clearly observed on numerical simulations and mimics the strain adap-
tation mechanism, where primary inoculation is associated with more prolonged incubation
period than subsequent passages in the same type of hosts [43]. This phenomena is illus-
trated in Figure 4. Indeed, the eigenfunction depends upon the various parameters of the
model. In particular, it depends upon the relation between the host and the prion strain as
the conversion rate τ and the fragmentation rate β. When a strain is inoculated to a new
host, these parameters are changed and this leads to a new eigenfunction in the equation.
We can observe on the numerical simulation that the closer is the initial host distribution to
the new one, the faster the accumulation is.

5 Conclusion and perspectives

Our motivation for this work is to better understand the mechanism of prion replication
by nucleated polymerization. Experiments argue are in favor of size-dependent properties
of PrPsc aggregates (from small oligomer to large polymers), such as the identification of
distinct morphologies [20, 22] or the analysis infectivity. We therefore generalized existing
mathematical model of prion replication to take into account aggregate size-dependent pa-
rameters, thus extending previous studies [9, 16, 17]. We made the choice of varying the
extension rate τ for several reasons. First, in vitro conversion abilities, which is the most
direct measure of τ , is heterogeneous with regards to prion aggregates size [27, 20]. Fur-
thermore, the hypothesis of a constant extension rate rests on the fibrillar aspect of PrPsc
aggregates (i.e. polymerization occurs only at two ends of the polymer)[9, 16, 17]. However,
PrPsc-containing fibrils are supposed to be preparation artifacts [28, 29]. The other param-
eters are also expected to be size-dependent, however the model is rather difficult to attack.
For further modifications concerning model (2), we suggest to take into account saturation
in the fragmentation rate for large fibrils, as noticed in [20].

First, we have analysed the stability of the steady states in a general framework. The
difficulty arising here is that we cannot reduce the study to a set of Ordinary Differential
Equations, as it is the case in [16, 18]. Under general assumptions on the coefficients, the
asymptotic stability of the healthy state (i.e. no prion aggregates) is established when the
PrPc is low. We also prove that this healthy state is unstable when the PrPc production rate
is high enough. This is in accordance with the asymptotic stability of the non-zero steady
state for ’constant coefficients’ proved in [16], even though a perfect dichotomy between the
two results is left open in the general case. Biologically, these results can be interpreted as the
propensity of PrPsc aggregates to give rise to prion disease depends on the amount of PrPc.
This effect is known for prion diseases, where PrPc is necessary for infection [44]. However,
in the more general context of understanding why some amyloids are infectious and others
are not, it therefore could be useful to investigate the amount of amyloidogenic precursors.

Furthermore, we have investigated numerically in what sense a non-constant conver-
sion rate may influence the mechanism of prion replication. Whereas changing the ex-
tension rate shape leads to similar PrPsc accumulation kinetics, the resulting equilibrium
size-distributions are qualitatively very different. It is worth noticing that experimental dis-
tribution of PrP may not correspond to a steady state of the system since the biological
process is dramatically stopped with the animal death. Therefore the considerations about
the stationary distribution might be not biologically relevant. Nevertheless we also observe
different distribution generically along the temporal dynamics.
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Figure 4: Prion strain adaptation. A strain is passaged from one specie, to another one. It is
supposed here that changing the host leads to different conversion and fragmentation rates,
the other model parameters being equal. The effect is to significantly change the size distri-
butions. (top,left) Size distribution of the conversion rate. (top, right) Corresponding prefer-
ential size distribution, i.e., the eigenfunction U(V∞;x). (bottom, left) Five initial PrPsc
size-distributions have been tested in the new host. IC1 corresponds to the eigenfunction of
the initial host. Each other initial condition (IC) corresponds to the final distribution ob-
tained for the previous IC, normalized to obtain the same initial PrPsc total amount. In each
case, V is initially equal to λ/γ, corresponding to the PrPc level without infection. (abscissa =
PrPsc aggregates size; ordinate = PrPsc aggregates number). (bottom, right) Corresponding
PrPsc accumulation kinetics (abscissa = time; ordinate = PrPsc total amount). Parameters
used for the numerical simulation – Host 1 : τ = .00001+ .0005∗exp(x(x−3)/(1+exp(x−3))
per day; β = 0.03x per day – Host 2 : τ = .00001 + .0005 ∗ exp(x(x− 10)/(1 + exp(x− 10))
per day ; β = 0.003x per day – Hosts 1 and 2 : λ = 2400 per day, γ = 4 per day, µ = 0 per
day.
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Based on this dynamics, we have expressed a possible explanation of the prion strain
adaptation mechanism. Prion adaptation occurs during subsequent serial passages in the
new host and leads to a reduction (until stabilization) of the incubation period. Nowadays, a
large body of literature suggests that differences between prion strains lie in the diversity of
structures of PrPsc aggregates [6, 7, 43, 45, 46, 47, 48, 49, 50]. However, the biophysical basis
of strain adaptation is not well understood. Here, we just suppose that replicative parameters
are different from one host to another one (due to different cofactors or different matches
between donor PrPc and PrPsc conformation for instance). We show that progressive changes
of the macroscopic PrPsc size distribution only can account for the adaptation. One limit to
our approach is that prion strains are not only characterized by a precise incubation time but
also by a specific cellular tropism. It would be of interest to introduce some mathematical
formalism taking into account cell heterogeneity in the brain and the resulting local PrPsc
distributions.

Taken together, our results emphasizes the potential importance of the size distribution
of PrPsc aggregates, which could be very informative on prion replication mechanism. There-
fore, we have shown that, in particular cases, qualitative shape of size-distribution permits
deducing some information about the most converting PrPsc aggregates. These results re-
main purely theoretical. However, the achievement of experimental size distribution of PrPsc
aggregates could allow us to approximate faithfully the inverse problem in order to obtain
the size dependence of the conversion rate from the PrPsc repartition. It would therefore
be possible to deduce replicative parameters, with no supplementary experiments (such as
bioassays to assess incubation time for each aggregate size). Notably, we therefore would
be able to determine the most infectious compartments. This knowledge is a critical step
for therapeutic perspectives (where PrPsc aggregates have to be stabilized in other compart-
ment) as for diagnostic tools, such Protein Misfolding Amplification (PMCA) [4]. PMCA
goal is to quickly synthesize in vitro large amounts of PrPsc starting with minute amounts
of prions. The yield of this technique is very sensitive to experimental procedures. Then
size distribution of infectivity could help to optimize PMCA protocols, notably by adapting
incubation and sonication steps to fall into the most converting size compartment of PrPsc
aggregates.
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