
Mathematical description of concentric demyelination in the human
brain: self-organization models, from Liesegang rings to chemotaxis

V. Calveza ∗, R. H. Khonsarib †
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Baló’s concentric sclerosis (BCS) is an atypical variant of multiple sclerosis (MS)
characterized by remarkable concentric demyelination patterns in the white matter of
the brain and the spinal chord. In Khonsari & Calvez (2006), we introduced a very
simple model based on cellular self-organization, which reproduced quite accurately the
quantitative and qualitative aspects of this disease. The present paper provides more
details on the mathematical framework underlying our precedent work. We first review
the basics of the chemotaxis aggregation principle and the modeling of the Liesegang
rings (LR) phenomenon. We then present our local macrophages recruitment model,
which derives from the reconsidering of the classical analogy between LR and BCS. This
new model provides several non-obvious insights, such as the link between the level of
aggressivity of the disease and the emergence of patterns.

Key words.

pattern formation, multiple sclerosis, concentric sclerosis, Liesegang rings, chemo-
taxis, volume-filling.

1. Introduction

Spatial cellular self-organization is a challenging area at the interface of mathematics
and biology [50]. Biological phenomena involving self-organization are as different as
bacterial colony growth [6,9,36], embryology [47], wound healing [19] and cancer growth
[56,10]. The importance of chemical species in morphogenesis was first suggested by
Alan Turing [60], who introduced the so-called diffusion-driven instability. Our per-
sonal approach is based on chemotaxis, which provides basic instabilities for collective
aggregation [55]. It is probably one of the main phenomena explaining cellular spatial
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organization. When dealing with a large number of cells, the models mainly involve
parabolic PDEs [16], as it is for the Patlak, Keller & Segel model [54,37].

The biological phenomenon we study in this paper is the concentric demyelination
occuring in a particular form of multiple sclerosis (MS), namely the Baló’s concentric
sclerosis (BCS). The pathogeny of BCS has been a neuropathologic enigma for many
years. We suggested in a previous paper [39] that the robust patterns appearing in this
disease may result from a chemotactic mechanism, involving three species.

∂m

∂t
= D∆m+ λm(m̄−m)︸ ︷︷ ︸

front of macrophages
activation

−∇ ·
(
χm(m̄−m)∇c

)
︸ ︷︷ ︸

local recruitment
of macrophages

∂d

∂t
= F (m)m(d̄− d)︸ ︷︷ ︸

destruction of myelin

−ε∆c+ αc = µd︸ ︷︷ ︸
production and fast diffusion

of the attracting signal

,

(1.1)

The combined effects of the activating front propagation and aggregation lead to the
formation of robust concentric bands of destroyed myelin (see section 5.2). Furthermore,
as a consequence of the mathematical properties of our chemotaxis-based model, the
striking patterns observed in BCS may be the result of the peculiar aggressivity of this
pathology [39].

Interesting analogies between BCS and LR have been raised early in the literature
[29]. In the following we present models inspired from these analogies, but adapted
to the current discoveries on the cellular mechanisms of demyelination. The paper is
organized as follows. We first introduce the basics of aggregation modeling and survey
the state of the art in the Patlak, Keller & Segel model [54,37] (section 2). We then
briefly describe the neuropathology of BCS (section 3, we refer to [39] for a more in-
depth presentation). Section 4 introduces the Ostwald supersaturation scenario for the
formation of Liesegang rings and the preconditioning model proposed by Stadelman
et al. [58] for BCS. Finally, section 5 presents more refined models for concentric
patterning by self-organization, namely the post-nucleation scenario for Liesegang rings
and our local macrophage recruitment model.

2. Cellular self-organization and chemotaxis

Chemotaxis is the motion of cells in response to a chemical signal. It occurs for
instance in tumoral angiogenesis [2,27,46] and in avian gastrulation during the formation
of the primitive streak [65]. In the brain, chemotaxis is known to play a role in the
neural migration that leads to cortical development [59]. Furthermore, cellular motion
in immunologic response is directed by chemokines like TGFβ or INFγ. Chemotaxis
may also be involved in the genesis of pigmentation patterns [52] (see also [28]).
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When cells themselves are involved in the production of cell-attracting chemical sig-
nals, self-organization may occur. The simplest non-linear chemotaxis-based model is
the Patlak, Keller & Segel (PKS) model for collective cellular aggregation. Many ex-
citing research topics have emerged from this theory. This model involves only two
variables: the cell density and the chemoattractant concentration. The core of PKS is
the following nonlinear coupling: the amount of chemoattractant produced by the cells
increases with the number of cells. Other models involving more realistic and complex
kinetics have been proposed. For instance, in order to describe the aggregation phase
in the amoebae Dictyostelium discoideum’s life cycle, the chemotaxis master equation
has been coupled with a system of two reaction-diffusion equations involving traveling
pulses in an excitable medium [33]. Related results have been obtained in [13] where a
one-parameter family of smallness conditions is derived for existence of global solutions.

In the following subsection, we review classical PKS from a mathematical viewpoint.
We aim to describe the chemotaxis aggregation principle involving, among other pa-
rameters, the total mass of cells. Next, we present recent theoretical developments
taking into account density-dependent saturation effects on cellular movements (non-
linear diffusion and/or saturation of the chemotactic response).

2.1. The classical PKS model – A brief overview
The PKS model has been introduced to describe the aggregation phase of a cellular

population viewed as a continuum (bacterial colonies, aggregation phase in the life cycle
of Dictyostelium). Depending on the modeling goals, several PKS variants have been
proposed, involving for instance blow-up or traveling waves. Here, we only consider two
species, namely the cell density n(t, x) and the chemoattractant concentration c(t, x),
in dimension two. From Jäger and Luckhaus [35] we write, in the fast chemical diffusion
case, 

∂n

∂t
= D∆n−∇ ·

(
χn∇c

)
in R+ × Ω,

−∆c = µ
(
n− 〈n〉

)
,

(2.1)

Ω ⊂ R2 being the domain under consideration, which can be a bounded domain or the
full space R2. In the former case, boundary conditions are zero flux,

D
∂n

∂η
− χn

∂c

∂η
= 0 on ∂Ω,

∂c

∂η
= 0,

η being the outwards unit normal vector to the domain boundary ∂Ω. The compatibility
correction 〈n〉 is the mean value of the cell density over the domain; it corresponds to
Neumann boundary conditions for c in a bounded domain Ω and has zero value if Ω is
the full space. In the full space, the Poisson equation −∆c = µn has to be understood
with c being

c = − µ

2π

∫
R2

log |x− y| n(t, y) dy. (2.2)
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We can adimensionalize the system (2.1) and we end up with only one reduced param-
eter,

χ̃ =
µχM

D
, (2.3)

where M is the total mass of cells, conserved along time.
The qualitative behaviour of this model results from the balance between two opposite

tendencies. The following alternative arises: either cells spread (when interactions are
negligible), or they aggregate, that is the cell density blows up (cell-to-cell attraction
dominates). The principle of mass constrain can be stated as follows: the reduced
parameter χ̃ drives the structure of the cellular population. If all the parameters of
the dimensionalized model (2.1) are fixed, the amount of cells determines whether self-
organization takes place or not.

Theorem 1 (Full space, [22]). If Ω is the whole space R2 and the initial data satisfies
n0

(
| log n0| + (1 + |x|2)

)
∈ L1, then solutions are global in time if µχM/D < 8π, or

blow up in finite time if µχM/D > 8π.

This theorem and its variants are due to several contributions, among which Jäger
and Luckhaus [35], Biler and Nadzieja [7], Nagai [48], Gajewski and Zacharias [26],
Dolbeault and Perthame [22].

Remark 2. The alternative in the full space is simple because there is a single threshold.
On a bounded domain, the boundary conditions imposed to the chemical species are
crucial. For instance, Neumann boundary conditions lead to global existence under the
condition µχM/D < 4π because of boundary effects [7,26,34,12].

The method for proving global existence in theorem 1 is based on the free energy
associated with the system (2.3). In the adimensional form, the following quantity is
time decreasing,

E(t) =

∫
ñ log ñ− χ̃

2

∫
ñc̃. (2.4)

The proof involves the logarithmic Hardy-Littlewood-Sobolev inequality [15], which
compares the opposite contributions of diffusion and chemical potential to cellular mo-
tion.

Remark 3 (PKS model in dimension d 6= 2). At least two ways of generalizing the
PKS model in dimensions other than two are possible, depending on the spatial law for
chemical diffusion.

• First, one may keep the equation −∆c = n. The qualitative behaviour thus de-
pends on the dimension: for d = 1, blow-up never occurs [48], but may happen
in higher dimensions. In this case, the Ld/2-norm is critical instead of the mass
[18].

• Following (2.2), one may use the logarithmic interaction kernel and state c =

− 1

dπ
log |x|∗n. In this case, the qualitative picture is the same for every dimension

d and the threshold is 2d2π [14].
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2.2. Volume effects – Recent issues
Several approaches lead to volume effects in the chemotaxis equation. It is mathe-

matically relevant to include nonlinear density-dependent coefficients in order to avoid
non-realistic blow-up. From a modeling point of view, the pressure function may be
overvaluated for high cell-density levels [27,40]. Another possibility is to come back to
the biased random walk framework [1] and introduce a nonincreasing function q. This
function takes into account that cellular motion is slowed down when cells are packed
[53]. All these saturating effects are included in the following master equation,

∂n

∂t
+∇ ·

(
− n∇h(n) + χ(n)n∇c

)
= 0, (2.5)

h(u) being the pressure function and χ(u) the density–dependent chemosensitivity. In
addition we introduce the nonlinear reduced pressure function, defined by

H ′(u) =
h′(u)

χ(u)
, H(1) = 0. (2.6)

Theorem 4 (Volume effects, [11]). Let Ω ⊂ R2 be a bounded domain. We assume that
H is growing to infinity faster than µM

4π
log u for large u, that is there exists δ > 0 and

U ∈ R+ such that

∀u ≥ U , H(u) ≥
(µM

4π
+ δ
)

log u. (2.7)

Then, there are global solutions under suitable initial conditions.

Remark 5. The criterion for blow-up prevention is the non–linear analogue of theorem
1. The non–linear reduced pressure (2.6) is involved in the balance between spread (high
pressure) and cell-to-cell attraction (low pressure), instead of the reduced coefficient
µχM/D. In fact theorem 4 reduces to theorem 1 because h(u) = D log u in the ”linear
case”.

The proof of theorem 4 also relies on refined estimations of the free energy,

E(t) =

∫
Φ(n) dx− µ

2

∫
nc dx, with Φ defined as Φ′(u) = H(u), Φ(0) = 0.

Examples and numerics
In the biased random walk approach, the density dependent transition rate q repre-

sents the saturation effects [53]. The relation between q and the nonlinear pressure and
chemosensitivity functions in (2.5) is given by{

uh′(u) = D
(
q(u)− uq′(u)

)
,

χ(u) = χ0q(u),
H ′(u) =

D

χ0

q(u)− uq′(u)

q(u)u
. (2.8)

The overcrowding effect is illustrated by the following two generic examples (see also
figure 1).
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(a)

(b)

Figure 1. Illustration of the chemotaxis principle with volume effects: each figure cor-
responds to the final equilibrium state of the cell density (except in top-right, where
blow-up occurs). Simulations are performed on a square regular grid using the dis-
cretization (2.11). (a) The transition rate is q(u) = 1

1+u
. The initial condition is a

perturbation of a homogeneous cell population with density 1 and total mass M = 16.
Other parameters are D = 1, µ = 1 and (left) χ0 = 2, (right) χ0 = 10. For convenience,
the right figure is an intermediate state: all the mass is finally concentrated at one point
(blow-up). The situation is qualitatively close to the classical model, where blow-up
occurs if µχ0M/D is sufficiently large. (b) We set q(u) = e−u. The initial condition is a
perturbation of a homogeneous cell population with density 1 and total mass M = 200.
Other parameters are D = 1, µ = 1 and (left) χ0 = 2.6, (right) χ0 = 3. Although the
solutions do not blow-up, there is a transition in equilibria between the spread of cells
and aggregation, where cell density is highly localized.
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(a) If q has a polynomial decay, q(u) = 1
1+uγ , γ > 0, then we get

H ′(u) =
D

χ0

1 + (γ + 1)uγ

u(1 + uγ)
∼∞

D

χ0

γ + 1

u
. (2.9)

In this case, the corresponding diffusion law is asymptotically linear, and blow-up
is avoided if D(1 + γ)/χ0 > µM/4π.

(b) If q is exponentially decreasing as q(u) = e−βu, β > 0, then we obtain

H ′(u) =
D

χ0

1 + βu

u
∼∞

D

χ0

β. (2.10)

Here, the reduced diffusion is asymptotically quadratic for large cell density and
blow-up never occurs because the condition (2.7) is always verified.

Filbet [23] provided theoretical results on PKS numerics based on discrete functional
inequalities. Here we adopt the Scharfetter & Gummel [57] factorization method for
our numerical scheme. This method is common in the theory of semi-conductor devices,
and gives a key role to the reduced pressure function. We rewrite the flux term of (2.5)
as follows,

∂n

∂t
= ∇ ·

(
Dq(n)2e

χ0
D

c∇
( n

q(n)
e−

χ0
D

c
))
. (2.11)

Remark 6. Note that (2.11) is a particular case of the following computation

∂n

∂t
= ∇ ·

(
nχ(n)∇

(
H(n)− c

))
= ∇ ·

(
Dn

χ(n)

χ0

e
χ0
D

c−χ0
D

H(n)∇
(
e

χ0
D

H(n)−χ0
D

c
))
,

because (2.8) implies

χ0

D
H(u) = log u− log

(
q(u)/q(1)

)
.

Our aim is now to use a semi-implicit scheme to solve the time-space discrete ver-
sion of (2.11) on a square regular grid. For convenience we only present the method
in dimension d = 1. We first solve the Poisson equation for the chemical potential
implicitely: n(t) −→ c(t+ dt). Then we discretize (2.11),

ni(t+ dt)− ni(t) = dt

(
Fi+ 1

2
−Fi− 1

2

dx

)
,

where the discrete flux Fi± 1
2

is defined by

Fi+ 1
2

=
1

dx
D
[
q(n)2(t)

]
i+ 1

2

exp
(χ0

D

ci+1 + ci
2

)
×

(
ni+1(t+ dt)

q(ni+1(t))
e−

χ0
D

ci+1

− ni(t+ dt)

q(ni(t))
e−

χ0
D

ci

)
.
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For the explicit nonlinear contribution, we choose the geometric mean[
q(n)2

]
i+ 1

2

= q(ni+1)q(ni).

In figure 1, we have plotted long time evolution corresponding to q(u) = 1/(1 + uγ)
and q(u) = e−βu. The chemotaxis principle is also valid in the nonlinear case: depending
on the parameters (among which high amount of cells and high chemosensitivity favour
structure emergence), we observe either cellular aggregation or spread.

Stationary states
Asymptotic behaviours of the linear or non-linear PKS systems (2.1) and (2.5) have

been thoroughly analysed by Keller & Segel (1970), Nanjundiah (1973), Childress and
Percus (1981) and Schaaf (1985) (see [34]). From these authors’ viewpoint, the aggrega-
tion principle is related to the instability of the homogeneous steady-state (emergence
of spatial structure). More recently, the volume-filling model with the particular satu-
rating function q(u) = (1−u/umax)+ has been studied in dimension one and others [32].
This saturating function corresponds to an infinite valued pressure for large u and can
therefore be viewed as a caricatural variant of a more general equation as (2.5). In this
case, the formation of plateaus occurs in a fast time scale, then these plateaus merge
on a slow time scale [21]. It is proved in [64] that the aggregation principle also holds in
this situation: the uniform steady state becomes unstable under some condition similar
to µχM/D > 8π.

3. Baló’s concentric sclerosis: a modeling challenge

The white matter contains the axons of neurons connecting together the cortex, the
basal ganglia, the brain stem and the spinal chord. Multiple sclerosis is a chronic de-
myelinating disease that affects the brain’s white matter, and more precisely myelin.
Myelin is a fatty substance that surrounds the axons and is necessary for a proper ner-
vous signal transmission. In the central nervous system, myelin is produced by special-
ized cells, the oligodendrocytes. Several interdependant cellular and molecular processes
are involved in demyelination and oligodendrocyte destruction. The neuropathological
lesions of MS are plaques (in 2D sections) of demyelinated areas, generally centered on
a blood vessel [43].

Baló’s concentric sclerosis is a rare and aggressive variant of MS where demyelination
regions consists of concentric bands centered by a blood vessel. The process that leads
to the formation of such patterns is extremely robust (see figure 2).

The study of BCS may shed some light on the pathogeny of the usual forms of MS. In
fact, recent neuropathological studies have pointed out that concentric patterning may
occur during the very early stages of most MS cases [5]. Furthermore, epidemiology
of Baló’s concentric sclerosis shows a clear predominance of this disease in South-East
Asia, indicating that concentric demyelination may be caused by some specific genetic
predisposition [17]. BCS may thus be an extreme form of MS sharing some common
underlying mechanisms with the more usual types of demyelination. In the last sec-
tion of this paper, we underline the fact that there may exist some positive correlation
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Figure 2. Neuropathology of Baló’s concentric sclerosis from (left) Baló 1928 [4] and
(right) Hallervorden et al. 1933 [29]. The lesional process is remarkably robust, even in
constrained areas (right). The analysis of these pictures provides morphometric data
on the lesions and helps to establish space laws for the pattern.

between cellular aggressitivity and spatial organization (as a consequence of the ag-
gregation principle described in section 2). In this context, Baló’s sclerosis may be a
subtype of multiple sclerosis in which the cellular agressivity of demyelinating effectors
is unsually increased.

We are convinced that a simple mathematical principle underlies such a robust pro-
cess. In the next sections, we analyse several models sharing a set of common funda-
mental hypotheses. One hypothesis is the presence of a propagating front of activation
in the brain. The origins of this leading reaction front are unknown and its shape varies
from one model to another. The link between BCS and LR is based on the presence
of this front. In fact, this interesting analogy was suggested and thoroughly studied
early in the litterature, first by Hallervorden et al. [29]. We reconsider these analogies
in the light of the recent discoveries on LR and use this fruitful comparison for the
construction of our model.

4. Direct concentric patterning

In this section, we present direct pattern processes that do not involve secondary
rearrangement scenarios but immediate pattern emergence as the leading reaction front
interacts with the medium. The cases in which the pattern is the result of secondary
non-linear rearrangements at the back of the propagating front will be studied in the
next section.
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4.1. Liesegang rings and Ostwald’s supersaturation scenario
Liesegang rings, first described by Liesegang in 1896 [44], occur both in chemical pro-

cesses [30] and in geology [41]. Precipitate rings are the result of chemical interactions
between a propagating front and a motionless species. The fact that rings commonly
appear in gels, where the viscosity is high, accounts for the necessary reduced mobility
of one of the species.

Several scenarios have been proposed to explain periodic precipitation. One of the
earliest theories, the so-called supersaturation scenario, was formulated by Ostwald in
1897 [51]. Ostwald’s supersaturation (OS) involves a single precipitation reaction with
an intermediate compound C = AB,

A+B −→ C −→ D (precipitation).

The reaction kinetics are based on the existence of two different precipitation thresh-
olds.
Initially, B is uniformly distributed in the gel and A propagates in the domain. Pre-
cipitation occurs whenever the concentration of the compound C = AB exceeds the
supersaturation threshold q∗ and takes place as long as [AB] > q (q being the satura-
tion threshold, with q < q∗). Each precipitated band of D depletes the surrounding gel
from B by acting as a sink. The presence of two distinct thresholds in the kinetic term
ensures that the reaction goes on even when the concentration [AB] is locally below q∗.

Since the early 80’s, a lot of works have been dedicated to OS. One of the most
intuitive models is probably the one proposed by Keller & Rubinow [38],


∂ta = D1a− kab,
∂tb = D2b− kab,
∂tc = D3c+ kab− P,
∂td = P,

(4.1)

where the precipitation rate is given by{
P = (c− q)+ if d > 0 or c ≥ q∗,
P = 0 otherwise.

Recently, Hilhorst et al. [31] have derived a simplification of system (4.1) for large
reaction rate k →∞. In addition they have equivalently reformulated the precipitation
rate P as follows,

P = (c− q)+ H

(∫ t

0

(
c(s, x)− q∗

)
+
ds

)
, (4.2)

where H denotes the Heaviside function. In other words, as soon as the concentration
c is over q∗ for some time t0, it goes on for t ≥ t0 (because

∫ t

0

(
c(s, x) − q∗

)
+
ds > 0)

unless c becomes less than q.
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Model 1 (Ostwald’s supersaturation scenario). In the limit of a fast precipitation reac-
tion between the two species A and B, the concentration compound C satisfies a singular
equation,

∂c

∂t
= ∆c+ δ(x = βt)− P, (4.3)

where the precipitation rate P is given by (4.2). The adimensionalized parameters are
the speed of the front β and the supersaturation threshold q∗.

We should mention that numerical simulations of equations (4.1) and (4.3) turn out
to be difficult (see also [62]). In fact this model belongs to the class of free boundary
problems (as the Stefan problem). Recurrent precipitation can be exhibited, however
the wavelength of the pattern strongly depends on the space step.

Prenucleation
The Ostwald’s supersaturation scenario is a limiting case of the so-called prenucle-

ation theory where precipitate particles grow in size after their formation (by ’ripening’),
independently from each other [62]. Accordingly, the precipitation rate writes

P =
∂d

∂t
, with d ∝

∫ t

0

J(s)r(t′, t;x)dt′, (4.4)

the nucleation rate J being function of the supersaturation s(t, x) = c(t, x)/c0. Numer-
ical evidence that such a mechanism eventually leads to recurrent precipitation is given
by [20] and [41,42] for example.

Remark 7. Liesegang rings verify several experimental quantitative space and time
laws. The time law states that the position of the nth band xn is proportional to

√
tn,

where tn is the time elapsed before the precipitation starts. The spacing law indicates
that the ratio between the position of two successive bands converges towards a finite
value 1+p, where p > 0. However, these laws are not biologically relevant in the study
of BCS [39]. In the following models, the quantitative space and time laws will always
depend on the nature of the propagating front.

4.2. The preconditioning model
The preconditioning hypothesis has been first proposed by Stadelmann et al. [58].

Preconditioning is a theory formulated by biologists interested in ischemia. Cells that
find themselves in an ischaemic environnement are supposed to produce preconditioning
molecules (for example heat shock proteins) that protect their neighbouring cells from
the deleterious effects of oxygen deficiency. In the scenario of Stadelman et al., a
propagating front of oligodendrocyte apoptosis triggers the production and diffusion of
molecular signals that protect surrounding oligodendrocytes at the edge of front (see
figure 3). The following three-species continuous model is inspired by the qualitative
description of [58]. A leading front of a molecular signal u(t, x) activates the microglia
and induces the apoptosis of the oligodendrocytes. The density of the damaged cells is
d(t, x), whereas the total cell density is a constant denoted by d̄. Attacked cells produce
a preconditioning potential φ(t, x), which diffuses rapidly and protects the cells that
have not be damaged yet. The preconditioning potential is active over a range of action
compatible with the free diffusion ability of molecules in the brain.
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Figure 3. Qualitative description of the preconditioning scenario. The preconditioned
oligodendrocytes are not destroyed by the activated microglia (from Stadelmann et al.
2005 [58]).

Model 2 (Preconditioning model). Let u denote the leading reaction front, d the density
of destroyed oligodendrocytes and φ the protection potential.

∂d

∂t
= A(u)P (φ) (d̄− d),

−ε∆φ+ αφ = µd.

(4.5)

The evolution of the outer variable u is not specified (it is a basic traveling front in
figure 4).

The protection is expressed by the cut-off function P (φ) = (q − φ)+, with a fixed
threshold q: if the preconditioning potential is sufficiently high, aptotosis does not
occur. The activation term A(u) is typically H(u− q′), corresponding to some level set
of the leading reaction front. Neither regeneration of oligodendrocytes nor remyelination
are taken into account, therefore d can only increase. The potential equation (linear
production, natural decay and linear fast diffusion) is chosen to be consistent with our
other models. It is still unclear whether preconditioning with this choice for φ can lead
to the emergence of concentric rings. As a matter of fact, we have numerical evidence
that it does not in 1D and in 2D, but this point still requires investigation.

Within system (4.5), an equilibrium is reached at the tip of the moving front (see
also [62]). Concentric bands only appear for some formulations of the potential φ (see
figure 4) which have no biological meaning.

It is worth mentioning that the width of the bands is entirely determined by the range
of action of the potential φ. However, the wavelength of the BCS patterns (figure 2) is
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Figure 4. Pattern formation in the preconditioning model 2. (left) We replace the
potential production in (4.5) by φ = K ∗d, the kernel K being a stiff Hill function with
a range of action equal to

√
ε: K(z) = 1|z|≤√ε. Interestingly, the radial symmetry is

not preserved. In addition, the pattern wavelength is close to the range
√
ε. The front

speed is v = 0.1 and other parameters are ε = 0.4, q = 0.1. Very strong preconditioning
with φ(x) = max|z|≤√ε d(x + z) leads to recurrent ring formation where symmetry is
conserved. However, the wavelength of such a pattern is not compatible with the
biological data. (right) In the one-dimensional case, an equilibrium is reached at the
front tip. The potential production is driven by −ε∆φ+φ = d, and parameters are the
same as above.

considerably larger than any molecular signal diffusion range known in the brain (see
[39] for discussion). It seems thus unlikely that the preconditioning potential could be,
as stated by Stadelman et al. [58], the simple resultant of the diffusion of a protective
molecule produced by the attacked oligodendrocytes.

The precipitation term in preconditioning is very different from the one used in OS.
Indeed, in system (4.1), this rate is notably discontinuous between d > 0 and d = 0 (this
discontinuity is due to the presence of two distinct thresholds, q and q∗). Moreover, in
preconditionning, concentric patterns may arise from a temporal discontinuity in the
progession of the front: the front may progress, stop, allow the protection to be effective
and then start progressing again. The clinical evolution of MS is characterized by the
occurence of attacks, corresponding to demyelination episodes, which could correspond
to such temporal discontinuities. However, several MS attacks occuring successively in
a few hours period would be necessary to induce concentric demyelination in accordance
with pathology’s time scales. Such an evolution has never been clinically described.

A concept derived from the prenucleation model (4.4) for LR may help to improve
the preconditioning model. By introducing a ”maturation in death” effect, damaged
oligodendrocytes would die progressively and induce a differential secretion of the signal
φ. Nevertheless, this new model will not solve the molecular range of action paradox.
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5. Secondary rearrangement at the back of the front

The two models described in this section share the common characteristic of produc-
ing patterns behind the leading reaction front. The first one, the competitive coarsening
model was first formulated to improve the theoretical description of LR by using a de-
generated bistability process. We have already described the second model based on
self-attraction of immune cells in our earlier study of BCS [39].

5.1. Postnucleation – The theory of competitive coarsening
Pre- and postnucleation scenarios are extensions of OS based on physical arguments.

They both assume that the particles produced by the precipitation reaction have the
ability to modify their size at the back of the front. These two theories differ by the
supposed nature of the particles (resp. solid precipitate and colloid) and the competi-
tion mechanism that occurs between growing particles. Postnucleation states that ring
formation may be the result of an instability mechanism at the macroscopic level [25].
A more recent model, which will be described below, initially proposed by Feinn et al.
[24], involves a two-species instability, namely the growing potential and the local mean
radius of particles.

One of the main objections to the direct application of OS to LR formation or con-
centric demyelination is that in both cases, an area of homogeneous turpitude appears
before periodic patterning. In the postnucleation theory, this area corresponds to a non
periodic field of colloidal particles and in BCS, to a diffusion anomaly observed with
MRI in the white matter before concentric demyelinization [63].

The chemical basis of the postnucleation theory is the same as in OS (section 4.1),
namely

A+B −→ C −→ D.

In addition however, the reaction front induces the formation of colloidal particles
(intermediate state between a molecule and a precipitate) by aggregation of the com-
pound C = AB [24]. A colloid is in fact a compound made out of a small number
of aggregated molecules, where the surface tension plays a non-negligible role. Spatial
structure emerges because large colloids grow faster at the expense of small ones. It is
worth noticing that self-organization is driven by the constrain of mass conservation.

The model combines a reaction-diffusion equation for the growing potential with an
ODE for the size of the particles. The time and space laws are not taken into account,
as mentioned before (remark 7). Accordingly, we build an abstract propagating front
with unspecified shape and speed. The concentration of the hypothetical propagating
species U is denoted by u = [U ]. The front forms colloidal particles which are described
by a growing potential σ, also called supersaturation. The mean colloidal particle size
ψ evolves according to a two-sided relaxation towards bistable equilibria (figure 5),

σ∗ = g(ψ) =
2ψ3

2ψ3 + ψ3
c

.
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Figure 5. Post-nucleation instability mechanism: the relaxation function g(ψ) is plotted
in dashed line. In addition, two trajectories in the phase diagram (ψ, σ) are represented
in full and dot-dashed lines, corresponding respectively to the black and white arrows
in figure 6.
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Figure 6. Postnucleation model on a square regular grid: the mean colloidal particle size
ψ is successively represented for t = 22, 30, 32, 42, 53, 64. The front is Fisher–type,
with speed 0.2 and amplitude A = 10. Other parameters are β = 0.1 and ψc = 0.25
(from Krug et al. [41]). For the black and white arrows, see figure 5.

Model 3 (Post-nucleation). Let u denote the leading reaction front. The post-nucleation
instability writes

∂u

∂t
= β∆u+Gu(A− u),

1

β

∂σ

∂t
= ∆σ − ψ2

[
σ − g(ψ)

]
+ u,

∂ψ

∂t
= σ − g(ψ).

(5.1)

where ψ denotes the mean particle radius at position x and time t, and σ is the growing
potential.

For the sake of coherence with the other models 2 and 4, we have opted for a Fisher
reaction-diffusion equation driving the outer activation variable u. We are interested in
its amplitude A and its speed 2

√
βGA. Figure 6 illustrates the evolution of the mean

particle size ψ. Note that the rings appear far from the leading front, as a result of the
bistable mechanism described in figure 5.

The secondary rearrangement of growing colloids at the back of the front inspired our
model for BCS. In this case however, the instability mechanism is driven by chemotaxis.

5.2. Chemotaxis hypothesis for Baló’s concentric sclerosis
The mathematical models for morphogenesis were originally based on chemical re-

actions involving only hypothetical morphogens [60,28]. Such reaction-diffusion mech-
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anisms could occur in BCS but we focus our study on self-organization processes due
to chemotaxis. The main idea of our model is that organization arises from chemo-
tactic movements in a population of macrophages. The chemical signals attracting
the macrophages – supposedly pro-inflammatory molecules – are produced by damaged
oligodendrocytes. By recruiting the surrounding macrophages, these oligodendrocytes
indirectly protect neighbouring zones.

Model 4 (Local recruitment of macrophages [39]). Let m be the density of activated
macrophages, c the concentration of the attractive signal and d the density of the de-
stroyed oligodendrocytes. The system writes

∂m

∂t
= D∆m+ λm(m̄−m)−∇ ·

(
χm(m̄−m)∇c

)
(5.2)

∂d

∂t
= F (m)m(d̄− d) (5.3)

−ε∆c+ αc = µd, (5.4)

where m̄, d̄ are characteristic macrophage and oligodendrocyte densities. The damaging
function F can be chosen almost arbitrarily as long as it is both positive and increasing.
We set F (m) = κ m/(m̄+m).

The system reads as follows: macrophages are activated through a Fisher equa-
tion and organize chemotactically (5.2), oligodendrocytes are destroyed by activated
macrophages (5.3) and produce a chemoattracting signal (5.4). This mechanism leads
to concentric band formation at the back of a turpitude area for a wide range of pa-
rameters (figure 7). In fact, this model only produces two patterns : concentric bands,
as in BCS, and homogeneous plaques of destroyed oligodendrocytes, as in MS (figure
9).

We have opted for a Fisher-type front in (5.2), but the final pattern is independent
of this particular choice. Instead we could have used the heat equation accounting for
the diffusion of a molecule, or a traveling pulse corresponding to the transduction of
some molecular signal (typically cAMP in the modeling of Dictyostelium’s aggregation
phase [33]). Nevertheless there are quantitative differences between these alternatives
(numerical results are shown in figure 8). Furthermore, the analysis of those quanti-
tative differences can provide a suitable test fot the selection of the true underlying
mechanism which drives macrophages activation (reaction-diffusion, pure diffusion or
transduction). The activation front hypothesis raises a controversial point. In fact, one
of the main arguments we produced against the preconditioning theory was that the
hypothesis of a protective molecule diffusing on centimetric distances was not biologi-
cally realistic. In our model the activation front also involves molecular movements on
long distances. Nevertheless, no hypothesis is necessary on the nature of this molecule,
or on its interactions with the cerebral tissue. There is no particular reason to believe
that the propagation of the activation front should be driven by pure diffusion alone.
On the other hand, preconditioning involves well characterized molecules which are not
known to be involved in specific interactions that would help them to travel through
the white matter by any other way than diffusion.
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Figure 7. Local recruitment of macrophages: evolution of d (damaged oligodendrocytes)
for t = 1h, 4h, 7h, 10h, 13h, 16h, from numerical simulations of model 4. Parameters
are r = 2, ε = 0.2 and χ = 30. The unit length is L = 1mm, and the domain width is
thus approximately 3cm. Numerical values for simulations were extracted from [49] and
[45]. Destroyed oligodendrocytes are figured in black. Interestingly, successive bands
appear behind the edge of the front.
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Figure 8. Pattern formation with two different front propagation types: (left) the front
is a traveling pulse with constant speed, and (right) a diffusing molecule activates the
macrophages. Note that space and time laws depends on the specific nature of this
leading front.

Adimensionalized equations.

We set the reduced variables and parameters as follows,

m̃ =
m

m̄
, d̃ =

d

d̄
, c̃ =

α

µd̄
, τ = λm̄t, y =

√
λm̄

D
x,

χ̃ =
χm̄µd̄

Dα
, F̃ (m̃) =

κ

λ

m̃

1 + m̃
, ε̃ =

ελm̄

Dα
. (5.5)

In particular, the speed of the front and the destructive strenght of the macrophages
are balanced by the ratio r = κ/λ. We obtain the following adimensionalized system,

∂m̃

∂τ
= ∆m̃+ m̃(1− m̃)−∇ ·

(
χ̃m̃(1− m̃)∇c̃

)
,

∂d̃

∂τ
= F̃ (m̃)m̃(1− d̃),

−ε̃∆c̃+ c̃ = d̃.

(5.6)

Only three parameters remain, namely the reduced chemosensitivity χ̃, the reduced
chemical diffusivity ε̃ and the damaging ratio r = κ/λ.

Some qualitative properties of the local macrophages recruitment model
Several qualitative properties are a posteriori confirmations of the validity of our

model. Local macrophages recruitment model creates concentric patterning, is very
robust and allows to draw links between BCS and MS.

The first interesting point is that here, the wavelength of the pattern is not directly
related to the range of action of the chemical potential c, as opposed to the precondi-
tioning model 2 (see [39]).
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Figure 9. Bifurcation diagram for model 4, with a fixed reduced parameter ε̃ = 0.1.
Two situations appear: concentric patterning (structure) or plaques (no structure).
Transition between these two states is driven by the structural parameters χ̃ and r for
fixed ε̃. Concentric patterning is favoured for increasing parameter values: aggressivity
is thus positively correlated to spatial structure. The figure in top-right is performed
under random perturbation of the chemical diffusivity, showing robustness of the model.

Spatial structuration as a result of aggressivity.

The reduced parameter χ̃ defined in (2.3) drives the spatial organization of cells in
the basic PKS model (2.1), and is also a major parameter in model 4. Consequently,
according to the chemotaxis principle (section 2), we expect qualitatively the corre-
sponding χ̃ in (5.5) to play a similar role. As a matter of fact, by increasing χ̃, we
induce a transition between homogeneous density of damaged oligodendrocytes and
concentric patterns (figure 9).

Furthermore, there exists a positive correlation between the aggressivity of the disease
and the emergence of structure. The underlying reduced parameter χ̃ = χm̄µd̄/Dα
increases with the aggressivity. Indeed, m̄ stands for the amount of immune cells and is
in the numerator (note that m̄ also appears in the reduced parameter ε̃, but only because
of its role in front speed). As χ̃ drives the bifurcation between plaques (no structure) and
concentric bands (structure), this parameter makes the junction between aggressivity
and spatial structure. This assertion is also true for the damaging parameter r = κ/λ,
which is related to the macrophages ability to destroy the oligodendrocytes (see figure
9).
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Model robustness.

The chemotactic scenario for BCS is highly robust. In fact, our model only pro-
duces plaques (no structure) or concentric bands (spatial organization). This sim-
ple alternative contrasts with the results of other types of pattern formation models.
For instance, in Turing systems, many different patterns can emerge, such as spots or
labyrinthic patterns [47,28], depending on the parameters. In models of bacterial colony
growth, chemotaxis can lead to localized cellular aggregates [8,61]. Furthermore, an-
other argument that accounts for the robustness of our model is that radial symmetry
is well-conserved under different perturbations (see [39] and figure 9).

Short-time assumption.

A major hypothesis of model 4 is that the chemoattractant c is produced by the
damaged oligodendrocytes d. This is obviously irrelevant for long evolution times,
because the damaged oligodendrocytes are digested by the macrophages. However, we
suggest that the relaxation time for macrophages before they re-attack the preserved
area is longer than the time scale of concentric demyelination (approximately a few days,
BCS is typically aggressive). The macrophages need a ”digestion time” before being
effective again. This assumption may explain why concentric patterns are observed in
very early MS cases [5]. The temporal transition from rings to plaques may first be the
result of self-organization (local recruitment), followed by the relaxation of macrophages
that spread again in the domain and destroy the pattern to form plaques.

6. Conclusion

Liesegang ring formation and Baló’s concentric sclerosis both involve the interac-
tion between a propagating front (whose origin is unknown in BCS) and non-moving
molecules or cells. The postnucleation instability in Liesegang rings led us to propose
chemotaxis as a self-organization mechanism. The model we built, namely the local
macrophages recruitment model, is very robust and closely fits biological data. Three
characteristics of our model need further investigations. First, the space and time
laws of the pathological process highly depends on the nature of the underlying front.
The study of this dependance may help to understand the mechanism of propagation.
Secondly, the wavelength of the pattern decreases when the density of macrophages
increases. This intuitive statement, based on a refined analysis of chemotaxis-based
models, has been numerically verified but still needs theoretical confirmation. Finally,
the aggressivity of the disease may account for its structuring ability. BCS may then be
a variant of MS where the same general pathogenic mechanisms occur with particular
intensity.

The authors address warm thanks to Benôıt Perthame for his fruitful help during this
work.

REFERENCES

1. W. Alt, Biased random walk models for chemotaxis and related diffusion approxi-
mations, J. Math. Biol. 9, 147–177 (1980).



22

2. A.R.A. Anderson and M.A.J. Chaplain, Continuous and discrete mathematical
models of tumor-induced angiogenesis, Bull. Math. Biol. 60, 857–900 (1998).

3. J. Baló, Leucoencephalitis periaxialis concentrica, Magy Orvosi Arch. 28, 108–124
(1927).
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in patients with Baló’s concentric sclerosis: natural history of lesion development,
Ann. Neurol. 46, 651–656 (1999).

18. L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and
angiogenesis systems in high space dimensions, Milan J. Math. 72, 1–28 (2004).

19. P.D. Dale, P.K. Maini and J.A. Sherratt, Mathematical modelling of corneal ep-
ithelium wound healing, Math. Biosciences 124, 127–147 (1994).

20. G.T. Dee, Patterns produced by precipitation at a moving reaction front, Phys.
Rev. Lett. 57, 275–278 (1986).

21. Y. Dolak and C. Schmeiser, The Keller-Segel model with logistic sensitivity function
and small diffusivity, SIAM J. Appl. Math. 66, 595–615 (2005).

22. J. Dolbeault and B. Perthame, Optimal critical mass in the two dimensional Keller-



23

Segel model in R2, C. R. Math. Acad. Sci. Paris 339, 611–616 (2004).
23. F. Filbet, A finite volume scheme for the Patlak-Keller-Segel chemotaxis model,

Numerische Math. 104, 457–488 (2006).
24. D. Feinn, P. Ortoleva, W. Scalf, S. Schmidt and M. Wolff, Spontaneous pattern

formation in precipitating systems, J. Chem. Phys. 69, 27–39 (1978).
25. M. Flicker and J. Ross, Mechanism of chemical instability for periodic precipitation

phenomena, J. Chem. Phys. 60, 3458–3465 (1974).
26. H. Gajewski and K. Zacharias, Global behavior of a reaction-diffusion system mod-

elling chemotaxis, Math. Nachr. 195, 77–114 (1998).
27. A. Gamba, D. Ambrosi, A. Coniglio, A. de Candia, S. Di Talia, E. Giraudo,

G. Serini, L. Preziosi, and F. Bussolino, Percolation, morphogenesis, and Burgers
dynamics in blood vessels formation, Phys. Rev. Lett. 90, 118101/1–4 (2003).

28. A. Garfinkel, Y. Tintut, D. Petrasek, K. Boström and L.L. Demer, Pattern forma-
tion by vascular mesenchymal cells, PNAS 101, 9247–9250 (2004).
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