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Abstract

Many infectious diseases exist in several pathogenic variants, or strains,
which interact via cross-immunity. It is observed that strains tend to self-
organise into groups, or clusters. The aim of this paper is to investigate
cluster formation. Computations demonstrate that clustering is indepen-
dent of the model used, and is an intrinsic feature of the strain system
itself. We observe that an ordered strain system, if it is sufficiently com-
plex, admits several cluster structures of different types. Appearance of
a particular cluster structure depends on levels of cross-immunity and, in
some cases, on initial conditions. Clusters, once formed, are stable, and be-
have remarkably regularly (in contrast to the generally chaotic behaviour of
the strains themselves). In general, clustering is a type of self-organization
having many features in common with pattern formation.

1 Introduction

Many pathogens have several different antigenic variants, or strains, present in a
host population simultaneously. The classic example is influenza [1, 12, 13, 7, 4],
where there are several circulating subtypes, with many minor variants within
each subtype. Other important examples are meningitis |9, 11|, dengue |7| and
malaria [8].

Because of similarities in, for example, their mechanisms of infection, strains
may interact with each other [9]. Infection with one strain may partially protect



the host against infection with other strains. Cross-immunity is included in dif-
ferent ways in different models, but the general idea is the same: infection with
one strain of the disease produces a lasting immune memory in the host which
acts to protect against subsequent infection by other strains. That is, for two
sufficiently close strains A and B, infection by strain A reduces the chance of a
secondary infection by strain B. For instance, in the case of influenza, the sur-
face protein hemagglutinin seems to be under strong positive selection because
it is the target of the immune response, and therefore it presents high antigenic
diversity in the virus population |1, 12, 13, 7|. This immune response may be
enhanced because of a previous infection with a close variant.

There are different approaches to the cross-immunity problem [3, 6|. For
instance, we can assume that a fraction, say g4, of individuals infected with
strain A gain complete immunity to strain B; alternatively, all the individuals
infected with strain A may be assumed to acquire partial immunity against B
(with a consequence that the force of secondary B-infection is reduced by a factor
vBa). Another possible hypothesis is that the secondary infection is weaker and
thus less transmissible by the infective host. These differences in the approaches
to cross-immunity lead to variety of models providing sometimes controversial
results. Under such circumstances it is reasonable to look for such features of the
multi-strain system which are intrinsic to this system and are robust respectively
a model choice.

A system of multiple strains interacting via host cross-immunity tends to self-
organise into groups, or clusters. The tendency for strains to occur in clusters
reflects the observed influenza dynamics |7, 13|. Cluster formation was observed
and discussed by [9, 10]. It may be noteworthy that the phenomenon of clustering
appears to be typical for many systems with internal order and may occur in such
systems as multi-species predator-prey systems. For example, it was observed in
neuronal networks [14, 15, 16, 17|.

In this paper we consider formation of clusters in ordered multi-strain systems.
We show that for complex systems several different types of cluster structure may
arise. We also demonstrate that cluster structures are not specific to a particular
model on the contrary, they appear to be intrinsic to the given strain system.
In general, cluster formation is a self-organisation phenomenon bearing many
similarities to pattern formation. A remarkable feature of clusters is that they
exhibit exceptional regularity even when dynamics of every strain is chaotic.

2 Model

Due to different approaches to cross-immunity, a variety of models of multi-strain
infections has been developed. These models sometimes lead to different out-
comes. It is important, therefore, to find such indicators which are characteristic
to the system itself and robust respectively choice of a model.



We start from a comparatively simple model of a multi-strain infection sug-
gested by [10]. The model is composed of only three compartments (and re-
spectively three differential equations) for each strain. If z;(¢) is the fraction of
individuals who have been or are infected with the strain ¢ (either they are infec-
tious or not), y;(t) is the fraction of the infectious with the strain, and w;(t) is
the fraction of individuals who have been infected (or are infected) by any strain
sufficiently close to the strain ¢ including ¢ itself (that is w; = U,;2;), then the
model equations are

i Biyi(1 — z;) — pzi,
dw;

dz;] = Zﬁjyj(l - wi) — pwy, (1)
dy;

= = Biyi [(1 —wi) + (1 =) (wi — 2i)] — (10 + 03)ys-

For this model, cross-protection does not affect susceptibility but reduces
transmissibility by a factor 1 — v (where the parameter v measures the degree
of cross-protection between two strains). Here j ~ ¢ means that the jth strain
is related to the ith strain and can induce cross-protection (that is if j ~ ¢ then
7i; # 0). The parameters 1/ and 1/0 are, respectively, host life expectancy and
average period of infectiousness, § is transmission rate. We refer to this model
as Gupta’s model. This simple model has been analysed in [10] and provided
important insights into pathogenes formation and strains genetic organisation.

To study the phenomenon of clustering we need to consider several levels
of cross-protection. Whereas the original model implies only one level of cross-
protection (v if two strains are related, or zero if they are not), and neglects
possible multiple infections by strains related to i. We relax these assumptions
below to make the model more generally applicable, while striving to keep the
model simple. We assume that the probability of cross-protection between strains
i and j is 7;; (that is, infection by the strain j reduces the probability that the
host will be infected by the strain ¢ by a factor 7;;), and consider the barycenter

of v;;, defined as
I = ( > %’@%) /( > 53’%’) : (2)
Jri,j i g7

We replace the coefficient «y in the system (1) with the barycenter I';.
Substituting the barycenter I'; into (1) and using variables V; = 1 — z;, X; =



1—w;, Y, = %yl and 7 = ut, we obtain the system

C?f - 1= (1Y),
d;f - 1—(1+;YJ>XZ-, (3)
ei% - ((1—ri)m+rixi—ri>m.

Here ¢; = pu/B; and r; = (pu + 03) /5.

Obviously I'; = v for Gupta’s model (when ~;; is either v, or zero). Further-
more, computations show that for this model the function I';(#) most of the time
remains taking one of a few constant values, with rapid shifting between these
values (see Fig. 4). This justifies the use of the function I';(¢).

3 Structure of a strain set

Systems of strains were formed as a result of a genetic process, and they generally
inherited some internal order associated with this process. Having this intrinsic
order, strains may be organised in an ordered set, or a discrete strain space every
point of which represents a strain. The idea of the strain space allows us to use
the concept of “immunological distance”. The immunological distance between
two strains may be assumed to depend inversely on their mutual level of cross-
protection.

The structure of the strain space depends on underlying immunological and
genetic processes. For instance, |7| considered the simplest possible strain space: a
linear strain space. In this case strains are arranged in a line, and they postulated
7vi; = exp(—(=2)?), where d is a constant. A multi-dimensional strain space may
be organised in the same way, with immunological distance defined, for example,
as the sum of horizontal and vertical distances. |5, 6] considered a system of four
strains arranged in a circle. In this case each strain is assumed to interact more
strongly with its adjacent neighbours than with the strain opposite.

Studying the maintenance of strain structure in a recombining virus pop-
ulation, [9] have introduced a simple framework where strains are organised as
follows: each strain is characterised by a combination of alleles at loci which are of
immunological interest. Strains induce cross-immunity if they share at least one
allele. For example, in the case of two loci and two possible alleles at each locus
(say a or b for the first locus, and x or y for the second one respectively) there are
four different strains: the original strains ax and by, and the recombinant strains
ay and bxr. To visualise such a strain structure we will use a multi-dimensional
graph where a dimension corresponds to a locus, and vertices represent strains.
Figure 1 illustrates the structure of the above mentioned four-strain system (two



loci and two possible alleles at each locus). Figure 2 shows the strain space of an
eight-strain system organised on three loci with two alleles at each locus.

4 Results

Cross-immunity may structure a set of strains into groups, or clusters. These
groups can behave at least in three ways: remain in homogeneous equilibrium
when no structure is observed (Fig. 3 a), oscillate when the clusters alternate
recurrently in succession (Fig. 3 b), or one group may dominate with the others
driven below survival level (Fig. 3 ¢) |9, 10]. The phenomenon of clustering is
conserved for all sufficiently large levels of cross-protection. Of course, when
v — 0, the equations are decoupled, and the clustering disappears.

In the case of the four-strain system shown in Fig. 1 it is natural to expect the
formation of two clusters of non-overlapping (or discordant) strains, namely ax
groups with by, and ay groups with bx (in Fig. 1 we respectively mark the strains
by squares and cycles). Indeed, such clustering has been observed [6, 5, 9, 10].
Figure 3 illustrates the strain dynamics: it is easy to see the formation of two
clusters.

However, a multi-strain system with only one level of cross-protection, which
is the same for all related strains, is hardly realistic. As the number of strains
grows, and especially if there are several different levels of cross-protection, the
self-organisation of the system may be more complicated. Furthermore, it may be
different for different levels of cross-protection. For instance, for the eight-strain
system shown in Fig. 2 at least two different types of clustering are possible.
From now on we will use the terms cluster structure and type of cluster structure.
The difference between these objects is that different cluster structures may be
of the same type. Below we will show this using an example.

For a system of eight strains organised in three loci with two alleles each
(Fig. 2) we assume two levels of cross-protection: namely 7, if the strains share
one allele, or v, if they share two alleles. Naturally, 71 < 5. For this system one
can expect formation of a structure of four clusters with two discordant strains
each [10]. Every cluster of such structure corresponds to one of the four main
diagonals of the cube in Fig. 2. However, this type of cluster structure was
observed only when ~; and ~, are sufficiently close. As the difference between
v1 and ¥, grows, a new type of cluster structure appears: now there are two
clusters, a and (3, with four strains each («a is composed of the strains (1,1,1),
(1,2,2), (2,1,2) and (2,2,1), and G of (2,2,2), (2,1,1), (1,2,1) and (1,1,2)). In
Fig. 2 the strains of these tetraedric clusters are marked respectively by cycles
and squares. This second type of clustering can hardly be expected a priori.
However, this cluster structure exists for a much wider range of +; and v, than
the first type. Fig. 4 illustrates the dynamics of the second type of clustering for
the eight-strain system: the forces of infection are shown for two values of ¢.
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Figure 1: Strain space of a four-strain system: two loci and two possible alleles
at each locus (see text for details).
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Figure 2: Strain space of an eight-strain system: three loci with two alleles
possible at each locus. Here, for instance, (2,2,1) means that the second, the
second and the first alleles are respectively at the first, the second and the third
locus.
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Figure 3: Dynamics of the four-strain system shown in Fig. 1. (b) and (c)
illustrate formation of two clusters each consisting of two strains. In (a) the
system is in homogeneous equilibrium, and no definite clustering can be observed.
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Figure 4: (left) Dynamics of forces of infection for 3 = 0.4, 75 = 0.8 and either
e = 51073 (a) or ¢ = 5.107* (b). We have choosen one tetraedric cluster,
and have bolded all strains inside. (right) Trajectories of the first strain in the
(v, 25, Iny;) phase plane. Note that, specially for small ¢, while the dynamics of
each single strain is chaotic, the cluster as a whole behaves remarkably regularly.
For a better understanding, we prefer to show forces of infection in a log-scale.
In this example, the coefficients of correlation R;; are 1 if strains are in the
same cluster and —0.6 otherwise (a); are between 0.75 and 1 if strains are in the
same cluster and between —0.45 and —0.19 otherwise (b). In (c¢) we show the
new function I'y(¢) which shifts very quickly between the two different levels of
cross-protection.



For a multi-strain system, the dynamics of a single strain is sometimes chaotic'
[10]. However, under the same conditions which cause chaotic strain dynamics,
clusters usually behave in a surprisingly regular fashion. This regularity is hardly
to be expected a priori, and it motivates the study of clusters.

To qualitatively describe the cluster formation, we introduce the clustering
matriz M. We set m;; equal to 1 if strains ¢ and j belong to the same cluster,
and m;; = 0 otherwise (the matrix is symmetric). For instance, if the vertices of
the cube Fig. 2 are ordered as following

then the correspondant matrices for the first and second types of clustering are

10000001 10101010
01000010 01010101
00100100 10101010
00011000 01010101

Mi=1o 0011000 and - Mr=1{1"019 0101 0
00100100 01010101
010000T10 10101010
10000001 01010101

respectively. To quantitatively estimate clustering for an ordered multi-strains
system, we are to calculate for each couple of strains (i, j) the correlation coeffi-
cient [2]

(3i)ys (1) = (3al0)) 1 (s(1)) _
(02 = ) () - (w0);)

Here <y(t)>T is the mean average

R; ;=

'Here and through this paper, by the term "chaos" we imply deterministic chaos.



The time interval Z should be sufficiently long and exclude the transient regime.

The coefficient R;; is a measure of synchronisation of the time series for the

forces of infection; R; ; = 1 when complete synchronization occurs. It is thereby

a straightforward procedure to relate the coefficients R;; to the coefficients of

clustering m;;, for instance applying a threshold function? H to the matrix R.
An alternative way is to calculate a similarity matrix with coefficients

@ _ B0 -5®0)),
w0 w02,

To systematically estimate clustering, we use the comparison between the
effective correlation matrice H(R) and the reference clustering matrices we have
defined, namely M; and Mjp. We have plotted in Fig. 5 the euclidian distance
between correlation matrices and the second type reference matrix: HH(R) —
MIIH2, for different values of 7; and 5. The shift between the two types of
clustering occurs when v; = v,.

Breaking the "natural" constraint 7; < 75 ; or even introducing a new co-
efficient 7y between opposite strains may lead to new types of clustering. For
instance, the extremal case v < 71 generates four clusters of two neighboured
strains, which are arranged in the same direction. Contrary to previous cases,
this organization is not unique, but contain three possible structures, which are
in the same orbit under the action of cube’s rotations (this is the reason why we
distinguish between the type of cluster structure and the cluster structure):

and

SO OO OO =
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OO OO == OO
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SO = O OO o -

We have to stress that the phenomenon of clustering is robust. We have mod-
ified in time the rates of infection [; of (3) by gaussian-distributed perturbations
of different amplitudes. Results (see Fig. 6) show resistance to perturbation.
Robustness can also be noticed in a different situation: simulations show that de-
creasing ¢ increases chaotic dynamics. However, clustering is still distinguishable
(see Fig. 4).

The tendency of the strains to self-organise into clusters, and the remarkable
regularity of the dynamics of these clusters, contrasting to the chaotic behaviour

2Within simulations, I have used a function of the form H(r) = exp(a(r — a)) .
1+ exp(a(r —a))
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Figure 5: (top) Distance of the matrix of correlation to the second reference
matrix My as a function of v, and ~,. Black area corresponds to 0, that is
matrices coincide, and grey area corresponds to a renormalized distance equal
to 1: this is where first type of clustering occurs. We have no data about the
white area in this diagram because it concerns the case 7; > 7. In fact it
corresponds to a third type of clustering, mentionned in the text. (bottom) The
transition between the two types of clustering is very fast: the two figures shows
this transition at very low amplitudes for vo = 0.8 : (left) v1 = 0.72; (right)

11



4
0

_4;

-84
8 1

_8 ‘ ‘ ‘ 0.2 0.5
(a) 0 5 10 15 20 04 0
5

1
0.2 0.5
04 0
4
0
_4;
_8, 1
0.2 0.5
04 0

Figure 6: Perturbation of original model through the rates of infection with
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tetraedric cluster are bolded.
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of a single strain, remains as the number of strains grows. With an increasing
number of strains, the number of cluster structures possible for the system grows
as well, and new types of cluster structures appear. The sixteen-strain system,
such that for each strain there are four loci with two alleles possible at each locus,
may be visualised as a four-dimensional cube. We assume three levels of cross-
protection for this system: ~; if the strains share one allele, 5 if the strains share
two alleles and -3 for the strains sharing three alleles (naturally, 71 < 72 < 73).
At least six cluster structures of three different types are possible for this system.
Particularly, if v3, 7 and ~; are approximately equal, a structure of eight clusters
with two discordant strains each appears (each cluster corresponds to a main
diagonal of the four-dimensional cube; strains of a cluster are the ends of the
diagonal). If 73 is sufficiently large compared with 7, and s, then the system
self-organises into two clusters of eight strains each. In this case the strains of a
cluster share either no allele at all, or two alleles; there is no cluster with strains
sharing one allele in this case. If both ~3 and ~, are large compared with v, then
a new stable type of cluster structure appears. In this case eight clusters with
two strains each form. A structure of this type differs from the above mentioned
structure of the first type (eight clusters with two discordant strains each) as
follows: in this case the strains of each cluster share one allele which is at the
same locus for every cluster of the structure. That is for this cluster structure,
the strains belong to the diagonal of the three-dimensional sides of the 4-D cube;
whereas for the cluster structure of the first type the strains are those on the
main diagonal of the four-dimensional cube. Since there are four loci for this
system, four different structures of this type are possible.

We are also able to generate four clusters of four strains by choosing v, larger
than v, and ~s.

Self-organization of strains into clusters is not a particular feature of the
model considered. Computations show that, for an ordered strain system given,
the same cluster structures arise for other models, even if the dynamics of these
clusters differ. It appears that a cluster structure is intrinsic to an ordered strain
system.

For comparison purposes, we considered the models suggested by [7], and [6].
The former is a comparatively simple STR model purposed to investigate the role
of cross-immunity in antigenic drift with a large number of strains. The model
equations are

dsS; -
a M—SiZ%]ﬂj[j — i,
j=1
I
ddtl BiliS; — i, (4)

where S; and I; are respectively the fractions of susceptibles and infectives for
the 7th strain, and ~;; is postulated to be equal to one.
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For a n strains system, [6] model is composed of n + 2" classes. The immune
hosts are indexed by the subsets of {1,...,n}: for J C {1,...,n}, Z; denotes
the individuals who are immune to exactly all strains included in J (thus they
are susceptibles to °J). The system’s equations are :

L = BLY Zi—(n+o)l
JuigJ
Z; = Z C(K, J,1)pil; Zk — Zﬁz‘fiZJ — puZy+ b (5)

i K i¢J

The term C(K, J,1) represent the effect of cross-immunity. In fact, it is the rate
of transfert from compartment K to compartment J after infection by strain .

Despite the huge difference in model complexity, both models demonstrate
similarities in cluster formation. The behaviour of both these systems is some-
what simpler than that of Gupta’s model. Particularly, no alternation of clusters
was observed for these models: depending on the system parameters, the phase
trajectories of the system converge towards one of the system equilibria with
damped oscillations. Nevertheless, the same cluster structures were formed for
both of these models. These cluster structures coincide with those for the mod-
ified Gupta’s model (3), and the values of the cross-protection parameters at
which the system shifts from one type of structure to another vary insignificantly
from one model to the other. For instance, for the eight-strain system Fig. 2,
the type of cluster structure formed depends on the comparative values of ~;;.
As in the case of the system (3), a structure of four clusters with two discordant
strains each appears when v; and v are comparatively close and, as the difference
between v, and 7, grows, a shift to the structure of the second type (two clusters
with four strains each) occurs. However, in contrast to the model (3), no regu-
lar oscillation of the clusters was observed: for both types of cluster structures
solutions of the models tend to an equilibrium state.

5 Conclusion

Strains of a multi-strain infection tend to self-organise into groups, or clusters. For
a complex strain system several different types of cluster structures are possible
and may arise. Which cluster structure occurs in reality depends mostly on levels
of cross-protection and, in some cases, on initial conditions. It is important to
note the distinction between the terms “cluster structure” and “type of cluster
structure”, as several structures of the same type are possible for complex strain
systems. Cluster structures which are possible for a strain system do not depend
on the particular model used. In fact, the structures are fairly robust to different
models. It appears that cluster structures of a particular strain system depend
on the structure of the strain space and on levels of cross-protection.

14



It is not clear why some cluster structures arise while others do not. While
clustering in the four-strain system is transparent enough, it is already not so
clear why in the eight-strain system the cluster structure of second type (two
clusters of four strains) appears. More complex systems, such as the sixteen-
strain system, raise even more questions. For instance, it is not clear why no
structure of four clusters with four strains each is possible (at least it was not
observed) for such a system.

It is a challenge to provide an exhaustive list of type of clustering which may
occur for a given set of strain.

Clustering does not occur only in cross-immunity systems. In fact, it seems
to be a more general interaction in coupled dynamical systems. We will present
there two simple dynamical systems which, at once they are suitably coupled,
present self-organisation in clusters (see Fig. 7 and also [2]).

The Van der Pol oscillator.

d2l’i
dt?

dﬂ?i

dt

—e(1—a3)

dx;
2 }: J
. ,7] dt

I~

The Rdssler oscillator.

dl’i

a —WY; — 2 — ij' Vij X
dy;

d—‘z = wx; +ay;

dz;

d—’i = 02+ (2 — 10)z

Remark. Note that in the case of the Rossler oscillator for parameters we
have chosen, the dynamic "at rest" (i.e. without coupling) is equilibrium. This
situation is similar to cross-immunity which makes oscillate a system a priori at
equilibrium.

One possible interpretation of the phenomenon is that cross-immunity, sup-
pressing some strains, forms negative feedback between the corresponding vertices
of the graph (such as in Fig. 1 and 2). This, in turn, induces a positive feedback
on other vertices.

Consider the second type of clustering of the eight-strain case as an exam-
ple: if we assume that cross-immunity enhances negative loops between closest
neighbours only, it generates as a consequence positive loops between strains in-
side each diagonal of the faces, that is inside the two complementary tetraedra o
and # we have defined previously. These two groups are related such that they
provide positive interactions inside and negative interactions outside against the
whole other cluster. Thus we can expect they synchronize. The same idea may
explain the apparition of two clusters of eight strains in the sixteen-strain case.

The phenomenon of self-organization of elements of an ordered system into
clusters does not only occur in epidemiology: for instance, similar examples are

15
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Figure 7: (top) Clustering for the Van der Pol-based system : w =1, ¢ = 0.1 and
(a) 1 =0, 72 = 0.4 : two clusters of tetraedric strains ; (b) v; = 0.4, 7o = 0.4 :
four clusters of opposite strains. (bottom) Clustering for the Rossler-based system
cw=1,a=-0.1and (c) 1 =0, 72 = 0.2: two clusters of tetraedric strains ;
(¢) 11 = 0.2, 79 = 0.2 : four clusters of opposite strains. Once more time we have
choosen one cluster and bolded strains inside (either two or four).
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observed in neural networks, and we believe that it may occur in other applica-
tions. Clustering is a type of self-organisation similar to pattern formation.

The most remarkable feature of the clusters is that they behave remarkably
regularly (at least for ordered strain sets), in contrast to the generally chaotic
behaviour of isolated strains. Furthermore, a cluster structure, once formed,
appears to be exceptionally stable. This stability implies that in many cases we
can (and even should) consider the dynamics of a few clusters, instead of the
dynamics of multiple separate strains, reducing in this way the system size.
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