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2 Centre for Mathematial Biology, Mathematial Institute,University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UKkorobein�maths.ox.a.uk, maini�maths.ox.a.ukJuly 2, 2004AbstratMany infetious diseases exist in several pathogeni variants, or strains,whih interat via ross-immunity. It is observed that strains tend to self-organise into groups, or lusters. The aim of this paper is to investigateluster formation. Computations demonstrate that lustering is indepen-dent of the model used, and is an intrinsi feature of the strain systemitself. We observe that an ordered strain system, if it is su�iently om-plex, admits several luster strutures of di�erent types. Appearane ofa partiular luster struture depends on levels of ross-immunity and, insome ases, on initial onditions. Clusters, one formed, are stable, and be-have remarkably regularly (in ontrast to the generally haoti behaviour ofthe strains themselves). In general, lustering is a type of self-organizationhaving many features in ommon with pattern formation.1 IntrodutionMany pathogens have several di�erent antigeni variants, or strains, present in ahost population simultaneously. The lassi example is in�uenza [1, 12, 13, 7, 4℄,where there are several irulating subtypes, with many minor variants withineah subtype. Other important examples are meningitis [9, 11℄, dengue [7℄ andmalaria [8℄.Beause of similarities in, for example, their mehanisms of infetion, strainsmay interat with eah other [9℄. Infetion with one strain may partially protet1



the host against infetion with other strains. Cross-immunity is inluded in dif-ferent ways in di�erent models, but the general idea is the same: infetion withone strain of the disease produes a lasting immune memory in the host whihats to protet against subsequent infetion by other strains. That is, for twosu�iently lose strains A and B, infetion by strain A redues the hane of aseondary infetion by strain B. For instane, in the ase of in�uenza, the sur-fae protein hemagglutinin seems to be under strong positive seletion beauseit is the target of the immune response, and therefore it presents high antigenidiversity in the virus population [1, 12, 13, 7℄. This immune response may beenhaned beause of a previous infetion with a lose variant.There are di�erent approahes to the ross-immunity problem [3, 6℄. Forinstane, we an assume that a fration, say γBA, of individuals infeted withstrain A gain omplete immunity to strain B; alternatively, all the individualsinfeted with strain A may be assumed to aquire partial immunity against B(with a onsequene that the fore of seondary B-infetion is redued by a fator
γBA). Another possible hypothesis is that the seondary infetion is weaker andthus less transmissible by the infetive host. These di�erenes in the approahesto ross-immunity lead to variety of models providing sometimes ontroversialresults. Under suh irumstanes it is reasonable to look for suh features of themulti-strain system whih are intrinsi to this system and are robust respetivelya model hoie.A system of multiple strains interating via host ross-immunity tends to self-organise into groups, or lusters. The tendeny for strains to our in lustersre�ets the observed in�uenza dynamis [7, 13℄. Cluster formation was observedand disussed by [9, 10℄. It may be noteworthy that the phenomenon of lusteringappears to be typial for many systems with internal order and may our in suhsystems as multi-speies predator-prey systems. For example, it was observed inneuronal networks [14, 15, 16, 17℄.In this paper we onsider formation of lusters in ordered multi-strain systems.We show that for omplex systems several di�erent types of luster struture mayarise. We also demonstrate that luster strutures are not spei� to a partiularmodel�on the ontrary, they appear to be intrinsi to the given strain system.In general, luster formation is a self-organisation phenomenon bearing manysimilarities to pattern formation. A remarkable feature of lusters is that theyexhibit exeptional regularity even when dynamis of every strain is haoti.2 ModelDue to di�erent approahes to ross-immunity, a variety of models of multi-straininfetions has been developed. These models sometimes lead to di�erent out-omes. It is important, therefore, to �nd suh indiators whih are harateristito the system itself and robust respetively hoie of a model.2



We start from a omparatively simple model of a multi-strain infetion sug-gested by [10℄. The model is omposed of only three ompartments (and re-spetively three di�erential equations) for eah strain. If zi(t) is the fration ofindividuals who have been or are infeted with the strain i (either they are infe-tious or not), yi(t) is the fration of the infetious with the strain, and wi(t) isthe fration of individuals who have been infeted (or are infeted) by any strainsu�iently lose to the strain i inluding i itself (that is wi = ∪j∼izj), then themodel equations are
d zi

dt
= βiyi(1 − zi) − µzi,

d wi

dt
=

∑

j∼i

βjyj(1 − wi) − µwi, (1)
d yi

dt
= βiyi [(1 − wi) + (1 − γ)(wi − zi)] − (µ + σi)yi.For this model, ross-protetion does not a�et suseptibility but reduestransmissibility by a fator 1 − γ (where the parameter γ measures the degreeof ross-protetion between two strains). Here j ∼ i means that the jth strainis related to the ith strain and an indue ross-protetion (that is if j ∼ i then

γij 6= 0). The parameters 1/µ and 1/σ are, respetively, host life expetany andaverage period of infetiousness, β is transmission rate. We refer to this modelas Gupta's model. This simple model has been analysed in [10℄ and providedimportant insights into pathogenes formation and strains geneti organisation.To study the phenomenon of lustering we need to onsider several levelsof ross-protetion. Whereas the original model implies only one level of ross-protetion (γ if two strains are related, or zero if they are not), and negletspossible multiple infetions by strains related to i. We relax these assumptionsbelow to make the model more generally appliable, while striving to keep themodel simple. We assume that the probability of ross-protetion between strains
i and j is γij (that is, infetion by the strain j redues the probability that thehost will be infeted by the strain i by a fator γij), and onsider the baryenterof γij, de�ned as

Γi =

(

∑

j∼i,j 6=i

γijβjyj

)/(

∑

j∼i,j 6=i

βjyj

)

. (2)We replae the oe�ient γ in the system (1) with the baryenter Γi.Substituting the baryenter Γi into (1) and using variables Vi = 1 − zi, Xi =
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1 − wi, Yi = βi

µ
yi and τ = µt, we obtain the system

dVi

dτ
= 1 −

(

1 + Yi

)

Vi,

dXi

dτ
= 1 −

(

1 +
∑

j∼i

Yj

)

Xi, (3)
εi

dYi

dτ
=

(

(1 − Γi)Vi + ΓiXi − ri

)

Yi.Here εi = µ/βi and ri = (µ + σi)/βi..Obviously Γi ≡ γ for Gupta's model (when γij is either γ, or zero). Further-more, omputations show that for this model the funtion Γi(t) most of the timeremains taking one of a few onstant values, with rapid shifting between thesevalues (see Fig. 4). This justi�es the use of the funtion Γi(t).3 Struture of a strain setSystems of strains were formed as a result of a geneti proess, and they generallyinherited some internal order assoiated with this proess. Having this intrinsiorder, strains may be organised in an ordered set, or a disrete strain spae everypoint of whih represents a strain. The idea of the strain spae allows us to usethe onept of �immunologial distane�. The immunologial distane betweentwo strains may be assumed to depend inversely on their mutual level of ross-protetion.The struture of the strain spae depends on underlying immunologial andgeneti proesses. For instane, [7℄ onsidered the simplest possible strain spae: alinear strain spae. In this ase strains are arranged in a line, and they postulated
γij = exp(−( i−j

d
)2), where d is a onstant. A multi-dimensional strain spae maybe organised in the same way, with immunologial distane de�ned, for example,as the sum of horizontal and vertial distanes. [5, 6℄ onsidered a system of fourstrains arranged in a irle. In this ase eah strain is assumed to interat morestrongly with its adjaent neighbours than with the strain opposite.Studying the maintenane of strain struture in a reombining virus pop-ulation, [9℄ have introdued a simple framework where strains are organised asfollows: eah strain is haraterised by a ombination of alleles at loi whih are ofimmunologial interest. Strains indue ross-immunity if they share at least oneallele. For example, in the ase of two loi and two possible alleles at eah lous(say a or b for the �rst lous, and x or y for the seond one respetively) there arefour di�erent strains: the original strains ax and by, and the reombinant strains

ay and bx. To visualise suh a strain struture we will use a multi-dimensionalgraph where a dimension orresponds to a lous, and verties represent strains.Figure 1 illustrates the struture of the above mentioned four-strain system (two4



loi and two possible alleles at eah lous). Figure 2 shows the strain spae of aneight-strain system organised on three loi with two alleles at eah lous.4 ResultsCross-immunity may struture a set of strains into groups, or lusters. Thesegroups an behave at least in three ways: remain in homogeneous equilibriumwhen no struture is observed (Fig. 3 a), osillate when the lusters alternatereurrently in suession (Fig. 3 b), or one group may dominate with the othersdriven below survival level (Fig. 3 ) [9, 10℄. The phenomenon of lustering isonserved for all su�iently large levels of ross-protetion. Of ourse, when
γ → 0, the equations are deoupled, and the lustering disappears.In the ase of the four-strain system shown in Fig. 1 it is natural to expet theformation of two lusters of non-overlapping (or disordant) strains, namely axgroups with by, and ay groups with bx (in Fig. 1 we respetively mark the strainsby squares and yles). Indeed, suh lustering has been observed [6, 5, 9, 10℄.Figure 3 illustrates the strain dynamis: it is easy to see the formation of twolusters.However, a multi-strain system with only one level of ross-protetion, whihis the same for all related strains, is hardly realisti. As the number of strainsgrows, and espeially if there are several di�erent levels of ross-protetion, theself-organisation of the system may be more ompliated. Furthermore, it may bedi�erent for di�erent levels of ross-protetion. For instane, for the eight-strainsystem shown in Fig. 2 at least two di�erent types of lustering are possible.From now on we will use the terms luster struture and type of luster struture.The di�erene between these objets is that di�erent luster strutures may beof the same type. Below we will show this using an example.For a system of eight strains organised in three loi with two alleles eah(Fig. 2) we assume two levels of ross-protetion: namely γ1 if the strains shareone allele, or γ2 if they share two alleles. Naturally, γ1 ≤ γ2. For this system onean expet formation of a struture of four lusters with two disordant strainseah [10℄. Every luster of suh struture orresponds to one of the four maindiagonals of the ube in Fig. 2. However, this type of luster struture wasobserved only when γ1 and γ2 are su�iently lose. As the di�erene between
γ1 and γ2 grows, a new type of luster struture appears: now there are twolusters, α and β, with four strains eah (α is omposed of the strains (1,1,1),(1,2,2), (2,1,2) and (2,2,1), and β of (2,2,2), (2,1,1), (1,2,1) and (1,1,2)). InFig. 2 the strains of these tetraedri lusters are marked respetively by ylesand squares. This seond type of lustering an hardly be expeted a priori.However, this luster struture exists for a muh wider range of γ1 and γ2 thanthe �rst type. Fig. 4 illustrates the dynamis of the seond type of lustering forthe eight-strain system: the fores of infetion are shown for two values of ε.5
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Figure 1: Strain spae of a four-strain system: two loi and two possible allelesat eah lous (see text for details).
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Figure 2: Strain spae of an eight-strain system: three loi with two allelespossible at eah lous. Here, for instane, (2, 2, 1) means that the seond, theseond and the �rst alleles are respetively at the �rst, the seond and the thirdlous.
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(b)ε=5e−4, γ=0.75 
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(c) Figure 3: Dynamis of the four-strain system shown in Fig. 1. (b) and ()illustrate formation of two lusters eah onsisting of two strains. In (a) thesystem is in homogeneous equilibrium, and no de�nite lustering an be observed.
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Figure 4: (left) Dynamis of fores of infetion for γ1 = 0.4, γ2 = 0.8 and either
ε = 5.10−3 (a) or ε = 5.10−4 (b). We have hoosen one tetraedri luster,and have bolded all strains inside. (right) Trajetories of the �rst strain in the
(vi, xi, ln yi) phase plane. Note that, speially for small ε, while the dynamis ofeah single strain is haoti, the luster as a whole behaves remarkably regularly.For a better understanding, we prefer to show fores of infetion in a log-sale.In this example, the oe�ients of orrelation Ri,j are 1 if strains are in thesame luster and −0.6 otherwise (a); are between 0.75 and 1 if strains are in thesame luster and between −0.45 and −0.19 otherwise (b). In () we show thenew funtion Γ1(t) whih shifts very quikly between the two di�erent levels ofross-protetion. 8



For a multi-strain system, the dynamis of a single strain is sometimes haoti1[10℄. However, under the same onditions whih ause haoti strain dynamis,lusters usually behave in a surprisingly regular fashion. This regularity is hardlyto be expeted a priori, and it motivates the study of lusters.To qualitatively desribe the luster formation, we introdue the lusteringmatrix M . We set mij equal to 1 if strains i and j belong to the same luster,and mij = 0 otherwise (the matrix is symmetri). For instane, if the verties ofthe ube Fig. 2 are ordered as following
7 8

6

�
�

�
�

�
�

�

5

�
�

�
�

�
�

�

4 3

1 2

�
�

�
�

�
�

�then the orrespondant matries for the �rst and seond types of lustering are
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1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1

























and MII =

























1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1























respetively. To quantitatively estimate lustering for an ordered multi-strainssystem, we are to alulate for eah ouple of strains (i, j) the orrelation oe�-ient [2℄
Ri,j =

〈

yi(t)yj(t)
〉

T
−
〈

yi(t)
〉

T

〈

yj(t)
〉

T
√

(

〈

yi(t)2
〉

T
−
〈

yi(t)
〉2

T

)(

〈

yj(t)2
〉

T
−
〈

yj(t)
〉2

T

)

.Here 〈y(t)
〉

T
is the mean average

〈

y(t)
〉

T
=

1

T

∫

I

y(τ)dτ.1Here and through this paper, by the term "haos" we imply deterministi haos.9



The time interval I should be su�iently long and exlude the transient regime.The oe�ient Ri,j is a measure of synhronisation of the time series for thefores of infetion; Ri,j = 1 when omplete synhronization ours. It is therebya straightforward proedure to relate the oe�ients Ri,j to the oe�ients oflustering mij , for instane applying a threshold funtion2 H to the matrix R.An alternative way is to alulate a similarity matrix with oe�ients
S2

i,j =

〈(

yi(t) − yj(t)
)2〉

T
√

〈

yi(t)2
〉

T

〈

yj(t)2
〉

T

.To systematially estimate lustering, we use the omparison between thee�etive orrelation matrie H(R) and the referene lustering matries we havede�ned, namely MI and MII . We have plotted in Fig. 5 the eulidian distanebetween orrelation matries and the seond type referene matrix: ∥∥H(R) −
MII

∥

∥

2
, for di�erent values of γ1 and γ2. The shift between the two types oflustering ours when γ1 ≈ γ2.Breaking the "natural" onstraint γ1 ≤ γ2 ; or even introduing a new o-e�ient γ0 between opposite strains may lead to new types of lustering. Forinstane, the extremal ase γ2 ≪ γ1 generates four lusters of two neighbouredstrains, whih are arranged in the same diretion. Contrary to previous ases,this organization is not unique, but ontain three possible strutures, whih arein the same orbit under the ation of ube's rotations (this is the reason why wedistinguish between the type of luster struture and the luster struture):

























1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
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1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 1
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1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 1
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We have to stress that the phenomenon of lustering is robust. We have mod-i�ed in time the rates of infetion βi of (3) by gaussian-distributed perturbationsof di�erent amplitudes. Results (see Fig. 6) show resistane to perturbation.Robustness an also be notied in a di�erent situation: simulations show that de-reasing ε inreases haoti dynamis. However, lustering is still distinguishable(see Fig. 4).The tendeny of the strains to self-organise into lusters, and the remarkableregularity of the dynamis of these lusters, ontrasting to the haoti behaviour2Within simulations, I have used a funtion of the form H(r) =
exp(α(r − a))

1 + exp(α(r − a))
.10
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Figure 5: (top) Distane of the matrix of orrelation to the seond referenematrix MII as a funtion of γ1 and γ2. Blak area orresponds to 0, that ismatries oinide, and grey area orresponds to a renormalized distane equalto 1: this is where �rst type of lustering ours. We have no data about thewhite area in this diagram beause it onerns the ase γ1 > γ2. In fat itorresponds to a third type of lustering, mentionned in the text. (bottom) Thetransition between the two types of lustering is very fast: the two �gures showsthis transition at very low amplitudes for γ2 = 0.8 : (left) γ1 = 0.72; (right)
γ2 = 0.74.
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of a single strain, remains as the number of strains grows. With an inreasingnumber of strains, the number of luster strutures possible for the system growsas well, and new types of luster strutures appear. The sixteen-strain system,suh that for eah strain there are four loi with two alleles possible at eah lous,may be visualised as a four-dimensional ube. We assume three levels of ross-protetion for this system: γ1 if the strains share one allele, γ2 if the strains sharetwo alleles and γ3 for the strains sharing three alleles (naturally, γ1 ≤ γ2 ≤ γ3).At least six luster strutures of three di�erent types are possible for this system.Partiularly, if γ3, γ2 and γ1 are approximately equal, a struture of eight lusterswith two disordant strains eah appears (eah luster orresponds to a maindiagonal of the four-dimensional ube; strains of a luster are the ends of thediagonal). If γ3 is su�iently large ompared with γ1 and γ2, then the systemself-organises into two lusters of eight strains eah. In this ase the strains of aluster share either no allele at all, or two alleles; there is no luster with strainssharing one allele in this ase. If both γ3 and γ2 are large ompared with γ1, thena new stable type of luster struture appears. In this ase eight lusters withtwo strains eah form. A struture of this type di�ers from the above mentionedstruture of the �rst type (eight lusters with two disordant strains eah) asfollows: in this ase the strains of eah luster share one allele whih is at thesame lous for every luster of the struture. That is for this luster struture,the strains belong to the diagonal of the three-dimensional sides of the 4-D ube;whereas for the luster struture of the �rst type the strains are those on themain diagonal of the four-dimensional ube. Sine there are four loi for thissystem, four di�erent strutures of this type are possible.We are also able to generate four lusters of four strains by hoosing γ2 largerthan γ1 and γ3.Self-organization of strains into lusters is not a partiular feature of themodel onsidered. Computations show that, for an ordered strain system given,the same luster strutures arise for other models, even if the dynamis of theselusters di�er. It appears that a luster struture is intrinsi to an ordered strainsystem.For omparison purposes, we onsidered the models suggested by [7℄, and [6℄.The former is a omparatively simple SIR model purposed to investigate the roleof ross-immunity in antigeni drift with a large number of strains. The modelequations are
d Si

dt
= µ − Si

n
∑

j=1

γijβjIj − µSi,

d Ii

dt
= βiIiSi − riIi, (4)where Si and Ii are respetively the frations of suseptibles and infetives forthe ith strain, and γii is postulated to be equal to one.13



For a n strains system, [6℄ model is omposed of n + 2n lasses. The immunehosts are indexed by the subsets of {1, . . . , n}: for J ⊂ {1, . . . , n}, ZJ denotesthe individuals who are immune to exatly all strains inluded in J (thus theyare suseptibles to cJ). The system's equations are :
İi = βiIi

∑

J :i/∈J

ZJ − (µ + σi)Ii

ŻJ =
∑

i,K

C(K, J, i)βiIiZK −
∑

i/∈J

βiIiZJ − µZJ + µδJ,∅ (5)The term C(K, J, i) represent the e�et of ross-immunity. In fat, it is the rateof transfert from ompartment K to ompartment J after infetion by strain i.Despite the huge di�erene in model omplexity, both models demonstratesimilarities in luster formation. The behaviour of both these systems is some-what simpler than that of Gupta's model. Partiularly, no alternation of lusterswas observed for these models: depending on the system parameters, the phasetrajetories of the system onverge towards one of the system equilibria withdamped osillations. Nevertheless, the same luster strutures were formed forboth of these models. These luster strutures oinide with those for the mod-i�ed Gupta's model (3), and the values of the ross-protetion parameters atwhih the system shifts from one type of struture to another vary insigni�antlyfrom one model to the other. For instane, for the eight-strain system Fig. 2,the type of luster struture formed depends on the omparative values of γij.As in the ase of the system (3), a struture of four lusters with two disordantstrains eah appears when γ1 and γ2 are omparatively lose and, as the di�erenebetween γ2 and γ1 grows, a shift to the struture of the seond type (two lusterswith four strains eah) ours. However, in ontrast to the model (3), no regu-lar osillation of the lusters was observed: for both types of luster struturessolutions of the models tend to an equilibrium state.5 ConlusionStrains of a multi-strain infetion tend to self-organise into groups, or lusters. Fora omplex strain system several di�erent types of luster strutures are possibleand may arise. Whih luster struture ours in reality depends mostly on levelsof ross-protetion and, in some ases, on initial onditions. It is important tonote the distintion between the terms �luster struture� and �type of lusterstruture�, as several strutures of the same type are possible for omplex strainsystems. Cluster strutures whih are possible for a strain system do not dependon the partiular model used. In fat, the strutures are fairly robust to di�erentmodels. It appears that luster strutures of a partiular strain system dependon the struture of the strain spae and on levels of ross-protetion.14



It is not lear why some luster strutures arise while others do not. Whilelustering in the four-strain system is transparent enough, it is already not solear why in the eight-strain system the luster struture of seond type (twolusters of four strains) appears. More omplex systems, suh as the sixteen-strain system, raise even more questions. For instane, it is not lear why nostruture of four lusters with four strains eah is possible (at least it was notobserved) for suh a system.It is a hallenge to provide an exhaustive list of type of lustering whih mayour for a given set of strain.Clustering does not our only in ross-immunity systems. In fat, it seemsto be a more general interation in oupled dynamial systems. We will presentthere two simple dynamial systems whih, at one they are suitably oupled,present self-organisation in lusters (see Fig. 7 and also [2℄).The Van der Pol osillator.
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= 0.2 + (xi − 10)ziRemark. Note that in the ase of the Rössler osillator for parameters wehave hosen, the dynami "at rest" (i.e. without oupling) is equilibrium. Thissituation is similar to ross-immunity whih makes osillate a system a priori atequilibrium.One possible interpretation of the phenomenon is that ross-immunity, sup-pressing some strains, forms negative feedbak between the orresponding vertiesof the graph (suh as in Fig. 1 and 2). This, in turn, indues a positive feedbakon other verties.Consider the seond type of lustering of the eight-strain ase as an exam-ple: if we assume that ross-immunity enhanes negative loops between losestneighbours only, it generates as a onsequene positive loops between strains in-side eah diagonal of the faes, that is inside the two omplementary tetraedra αand β we have de�ned previously. These two groups are related suh that theyprovide positive interations inside and negative interations outside against thewhole other luster. Thus we an expet they synhronize. The same idea mayexplain the apparition of two lusters of eight strains in the sixteen-strain ase.The phenomenon of self-organization of elements of an ordered system intolusters does not only our in epidemiology: for instane, similar examples are15
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Figure 7: (top) Clustering for the Van der Pol-based system : ω = 1, ε = 0.1 and(a) γ1 = 0, γ2 = 0.4 : two lusters of tetraedri strains ; (b) γ1 = 0.4, γ2 = 0.4 :four lusters of opposite strains. (bottom) Clustering for the Rössler-based system: ω = 1, α = −0.1 and () γ1 = 0, γ2 = 0.2: two lusters of tetraedri strains ;() γ1 = 0.2, γ2 = 0.2 : four lusters of opposite strains. One more time we havehoosen one luster and bolded strains inside (either two or four).
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