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Abstract

We study the non-linear stability of a coupled system of two non-linear transport-diffusion
equations set in two opposite half-lines. This system describes some aspects of yeast pairwise
cellular communication, through the concentration of some protein in the cell bulk and at the
cell boundary. We show that it is of bistable type, provided that the intensity of active molecular
transport is large enough. We prove the non-linear stability of the most concentrated steady state,
for large initial data, by entropy and comparison techniques. For small initial data we prove the
self-similar decay of the molecular concentration towards zero. Informally speaking, the rise of
a dialog between yeast cells requires enough active molecular transport in this model. Besides,
if the cells do not invest enough in the communication with their partner, they do not respond to
each other; but a sufficient initial input from each cell in the dialog leads to the establishment of
a stable activated state in both cells.

AMS Subject Classification (2010): 35B32, 35B35, 35B40, 35K40, 35Q92, 92B05, 92C17, 92C37

1 Introduction, model and results

How do cells communicate with each other? This question, which seems simple, is still under
current investigation. Cell communication plays fundamental role in many cellular processes includ-
ing cell division and differentiation, directional movement as well as morphogenesis. Defects in
cell-cell communication are also implied in the development of cancer.

From the biological point of view, a prototypical model for cell communication is given by yeast
cell mating. In this work we propose and analyze a minimal model describing some aspects of
yeast cell-cell communication. This model is based on a system of coupled non-linear and transport-
diffusion equations. The uncoupled transport-diffusion equation, was introduced and studied in pre-
vious works to describe internal protein dynamics in a single yeast cell [21, 9, 8, 28, 32], including
the process of spontaneous polarization. Here, from the mathematical viewpoint, the novelty is the
coupling between two such equations set on two opposite half-lines. The coupling occurs from some
scalar quantities which account for molecular communication between cells.
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†thomas.lepoutre@inria.fr
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§nicolas.muller@parisdescartes.fr

1



In the context of yeast cell communication, the main interest of this model is to link the output
of cell communication to protein aggregation on both cell membranes. Indeed, the capacity of a cell
to interact with other cells depends on its intracellular protein distribution ni: proteins located on the
cell membrane (µi) are able to combine with some exterior signalling pheromone to enhance active
transport of proteins to produce some signal that will diffuse in the exterior medium. Hence, in a
cell where the proteins are located in its bulk, the communication with the environment will be very
difficult. On the contrary, a cell with many proteins on its membrane will have a great capacity for
communication.

In the following, each cell i = 1, 2 is modelled as a half-line, with a boundary reduced to a
single point (see Figure 1). As the coupling between the two cells occurs through a scalar quantity,
there is no need to consider disjoint half-lines. So we consider that each cell coincides with R+,
without loss of generality. Each cell is characterized by the distribution of some protein involved
in the polarization process. The proteins can be in two states: either in the cell bulk – with density
ni(t, x) – or attached to the cell boundary – with fraction µi(t). Accordingly, the total molecular
content in each cell is:

Mi := µi(t) +

∫ ∞
0

ni(t, x) dx . (1.1)

The model consists of the following equations:

∂tni(t, x) = ∂xxni(t, x) + χµ1(t)µ2(t) ∂xni(t, x) , t ≥ 0 , x ≥ 0 . (1.2)

for i = 1, 2, where ni = ni(t, x) is the density of some molecular content in each cell bulk, µi(t)
(i = 1, 2) is the fraction of molecules attached to each cell boundary at x = 0, and χ > 0 is a
parameter, which accounts for the strength of the coupling between the two cells. This parameter
combines the effects of intracellular protein transport, as well as the level of interaction between
the two cells that may depend, e.g. upon the mutual distance. The dynamics of µi(t) are given by
attachment and detachment kinetic at the boundaries:

dµi
dt

(t) = ni(t, 0)− µi(t) , t > 0 . (1.3)

Moreover, equations (1.2) are complemented with the following flux boundary conditions:

dµi
dt

(t) = ∂xni(t, 0) + χµ1(t)µ2(t)ni(t, 0) , t > 0 , (1.4)

which ensure the conservation of the total molecular content in each cell (1.1),

Mi(t) = Mi(0) = µi(0) +

∫ ∞
0

n0
i (x)dx = Mi.

Briefly, the main assumptions that lead to (1.2) are the following: (i) Proteins in the bulk can be
either freely diffusing or actively transported towards the cell boundary, (ii) The effects of activated
proteins attached to the boundary (µi) are twofolds as they enhance active transportation in both
cells. The underlying processes are: nucleation of actin filaments in one cell, and secretion of some
external signalling molecule (pheromone) which can bind to the other cell. We refer to Section 2 for
a detailed presentation of the model with biological motivations.

For the sake of simplicity, throughout this work we will assume that both cells have the same
(conserved) total molecular content which we normalize as follows:

M1 = M2 = 1 . (1.5)
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µ1(t)n1(t; x)

n2(t; x)µ2(t)

v = −χµ1µ2

v = +χµ1µ2

Cell #1 Cell #2

Figure 1: Cartoon of the model (1.2)-(1.3)-(1.4): the molecular content in the bulk experiences
diffusion and transport at speed v = ±χµ1µ2, where µi can be seen as the fraction of activated
molecules attached to the cell boundary. The dialog between the two cells arises as they secrete some
communication signal (a pheromone) at a rate proportional to µi, enhancing further the transport of
molecular content in the opposite cell. Details are given in Section 2.

Since the transport speed is bounded, µi(t) ≤ Mi, global existence of solutions to the Cauchy
problem (1.2)–(1.3)–(1.4) holds true. We refer to Appendix C for the sketch of the well-posedness
theory for the PDE-ODE coupled system. Here, our aim is to precise the long time behaviour.
In order to bypass the lack of comparison principle on equation (1.2), our method is based on a
concentration-comparison principle that is obtained when equation (1.2) is integrated in space, see
[28]. This principle allows constructing some remarkable sub/supersolutions and performing a non-
linear stability analysis.

As the coupling goes through a cubic nonlinearity in the transport term of (1.2), it is expected that
for small initial data, or alternatively for small parameter χ, the system behaves essentially linearly.
Indeed, we identified the threshold χ ≶ 4 above which non-linear effects are at play.

Before stating the results, we start with some notations. For i = 1 , 2, the function Ni is defined
as the cumulated distribution function of µi(t)δ0 + ni(t, x) dx:

Ni(t, x) = µi(t) +

∫ x

0
ni(t, y) dy . (1.6)

Besides, for any parameter µ ∈ (0, 1) the cumulated distribution function Nµ is defined by

Nµ(x) = µ+ (1− µ)
(

1− e−χµ2x
)
.

Suppose that χ ≥ 4. Then the polynomial P defined by

P (X) = χX2 − χX + 1 , (1.7)

admits two real roots denoted by µ− ≤ µ+. The functions n± and m± are defined by:

n±(x) = (1− µ±)m±(x) = (1− µ±)χµ2
±e
−χµ2±x , (1.8)
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Before stating our results about the analysis of (1.2)–(1.3)–(1.4), let us briefly comment the
literature. The uncoupled problem, corresponding to a single cell (i = 1, say) in a constant field
of pheromone concentration (µ2 ≡ 1, say) was introduced in [9] and [8] as the one-dimensional
version of a class of active transport models introduced previously in [21] for the modelling of cell
polarization. Two cases were considered: either a direct coupling µi(t) = ni(t, 0), or a coupling via
exchange of molecular content at the boundary, as (1.3). In the former case, the solution may blow
up in finite time for large χ, due to the strong interaction. In the latter case, the solution converges
to a bounded stationary state for large χ, but decays to zero for small χ. The results were improved
later in [28] using suitable comparison principles.

This dichotomy between concentration of the solution vs. self-similar decay is analogous to the
classical Keller-Segel equation for chemotaxis [5]. However, the interaction here goes through the
trace value at the boundary ni(t, 0), which makes the analysis more difficult. It is more singular,
and furthermore it lacks symmetry properties and in particular there is no free energy associated
with (1.2)–(1.3)–(1.4) to our knowledge. Nevertheless, we show here that the system inherits some
structure from this analogy. In particular, it is possible to construct Lyapunov functionals that contain
some entropy contributions. This is quite remarkable as the system is genuinely non-linear.

Finally, let us mention that similar models involving a coupling between a one-dimensional PDE
and a scalar boundary value appear in the modelling of NNLIF models [6, 10, 11, 16, 7], except that
the derivative at the boundary is involved, among other differences. Nevertheless, entropy techniques
have also been used in this context, as well as moment estimates.

All the aforementioned works deal with only one density (of proteins or attracting cells or firing
neurons). In the present work we show that many results can be extended to the nonlinear coupling
between two protein densities, as in Figure 1. Besides, the underlying cubic nonlinearity yields a
bistable behaviour which deserves some careful analysis.

The following preliminary statement is concerned with the linear stability analysis of the system.

Proposition 1.1 (Steady states and linear stability). Consider the system (1.2)–(1.3)–(1.4) and (1.5).
Any steady state (ni, µi) satisfies n1 = n2 and µ1 = µ2. Moreover, the following alternative holds
true:

• If χ < 4, then the system does not admit a non-zero steady state.

• If χ > 4, then, there are two steady states (n−, µ−) and (n+, µ+). Furthermore, (n+, µ+) is
linearly stable while (n−, µ−) is linearly unstable.

• If χ = 4, then µ− = µ+ = 1/2 and the sytem admits a unique steady state.

Intuitively, the system is of bistable type, with a bifurcation at χ = 4. For χ < 4, the density is
expected to converge to zero for any initial condition and to follow the self similar behaviour driven
by the diffusion part. For χ > 4 it is expected either to follow the latter self similar behaviour or
to converge to the most concentrated steady state (n+, µ+) defined by (1.7), (1.8), depending on the
initial data (see Table 1).

In this work we are interested in making this informal statement rigorous in the non-linear regime.
We shall refer to our previous work [8] for well-posedness of the system in the uncoupled case
(µ2 ≡ 1), including the careful handling of the trace term n(t, 0).

Our main result is the convergence towards the steady state (n+, µ+) defined by (1.7), (1.8), for
large enough initial data.

Proposition 1.2 (Non-linear stability of the largest equilibrium). Assume χ > 4 and let (n±, µ±)
be defined by (1.7), (1.8). Let (ni, µi)1≤i≤2 be the solution to (1.2)–(1.3)–(1.4) with initial data
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(n0
i , µ

0
i )1≤i≤2 satisfying (1.5). Suppose that both the entropy and the first moment of the initial data

(n0
i , µ

0
i )1≤i≤2 are finite:

∫∞
0 n0

i (x)(x + log n0
i (x)) dx < +∞. Assume in addition that there exist

two real numbers (µ
0
, µ0) ∈ (0, 1)2 ordered as follows,

µ− < µ
0
< µ+ < µ0 , (1.9)

such that the initial data are ordered as follows:

(∀x ≥ 0) Nµ
0
(x) ≤ N0

i (x) ≤ Nµ0(x) , i = 1, 2 . (1.10)

Then, for i = 1, 2, the convergence of (ni, µi) towards the steady state (n+, µ+) holds true in the
following sense: 

|µi − µ+| = O
(

1√
1+t

)
,

‖ni(t, ·)− n+‖L1(R+) = O

(√
log(1+t)√

1+t

)
,

where n+ is defined by (1.8). Moreover in the case of identical initial data (n0
1, µ

0
1) = (n0

2, µ
0
2) =

(n0, µ0), we have a slightly better error estimate:

‖n(t, ·)− n+‖L1(R+) = O

(
1√

1 + t

)
.

On the other hand, for small initial conditions, or small parameter χ, we prove the self-similar
decay of the solution. To state this result, we introduce the notationG for be the normalized Gaussian
distribution on the half line

G(x) =

√
2

π
e−

x2

2 , x ≥ 0.

Proposition 1.3 (Self similar decay in the subcritical case). Let (ni, µi)1≤i≤2 be the solution to
(1.2)–(1.3)–(1.4) with initial data (n0

i , µ
0
i )1≤i≤2 satisfying (1.5). Assume that

• either χ < 4,

• or that χ ≥ 4 and that there exists µ0 ∈ (0, µ−) such that for i = 1, 2

(∀x ≥ 0) N0
i (x) ≤ Nµ0(x) .

Assume in addition that ∫ ∞
0

n0
i (x)(x2 + log n0

i (x)) dx < +∞ .

Then, for i = 1, 2, the following convergences hold true:
µi(t) = O

(
1√
1+t

)
,∥∥∥∥ni(t, .)− 1√

1+2t
G
(

.√
1+2t

)∥∥∥∥
L1(R+)

= O
(

1
(1+t)1/4

)
.

We shall refer to the zero state as the ”silent state” where no dialog takes place between the cells.
On the other hand, we shall refer to the state (n+, µ+) as the ”dialog state”, where the cells feel each
other with a high fraction of activated protein at the cell boundary. Informally, our results state that,
if χ > 4, then the system is bistable: if the cells do not invest enough in the communication with their
partner, they do not respond to each other, and their molecular content spreads out; but a sufficient
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χ < 4

Convergence towards the zero steady state (no dialog)

χ > 4

µ 0 < µ < µ− µ− µ− < µ < µ+ µ+ µ+ < µ

Nµ supersolution steady state subsolution steady state supersolution

If N0
{1,2}(x) < Nµ−(x), linearly If Nµ−(x) < N0

{1,2}(x),

n{1,2} → 0 and µ{1,2} → 0 unstable n{1,2} → n+ and µ{1,2} → µ+

no dialog pairwise dialog

Bifurcation diagram

0 2 4 6 8 10 12

χ

0

0.5

1

µ

silent state

dialog state

µ+

µ
−

Table 1: Informal summary of the results and sketch of the bifurcation diagram. We refer to the main
text for the exact statements and assumptions.

initial input from each cell in the dialog leads to the establishment of a stable activated state. The
two stable states are separated by an unstable state associated with a low level of activation. Results
are summarized in Table 1. Notice that not all the initial states are contained. In particular, we could
not deal with the case where one cell has a high input whereas its partner has a low input initially:
N0

1 (x) < Nµ− < N0
2 (x).

The article is organized as follows: Section 2 is devoted to the biological assumptions underlying
our model. A useful comparison principle is stated in Section 3. Section 4 is devoted to the proof
of the non-linear stability of the most concentrated steady state (Proposition 1.2). In Section 5,
self-similar decay is establihed in the sub-critical case (Proposition 1.3). Linear stability analysis is
postponed to the Appendix (Proposition 1.1). Some notations and mathematical useful inequalities
are recalled in the last section of the Appendix.

2 Further biological background

Many events in plant and animal development depend on the ability of cells to interact with each
other. Examples include the interaction of neuronal growth cones with target cells, cell division and
differentiation, cell dissemination, inter-organ communications, tissue morphogenesis or regenera-
tion.
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Figure 2: (Left) Yeast cells of both types (a or α) secrete some pheromone (Sa or Sα) and bear
a pheromone receptor to detect the signal from the opposite cell type. (Right) A two-dimensional
cartoon of protein dynamics inside a cell. Actin is polymerized into short filaments, that interact with
each other. They are bundled together to form actin cables (which are part of the cytoskeleton) that
cross the cell. In our model, the nucleation of filaments is influenced both by the concentration of
Cdc42 at the membrane (the proteins that are actively transported along actin filaments) and by the
concentration of external pheromone.

Understanding how cells dynamically integrate and respond to external signals from the microen-
vironment is a very challenging question. From the biological viewpoint, a generic model for cell
communication is given by yeast cell mating. Yeast cell communication involves some intra-cellular
proteins (as Cdc42), the cell cytoskeleton and extra-cellular pheromone molecules, Fig. 2 [1].

Several mathematical models have been proposed in the past decade. They incorporate many
aspects of the molecular mechanisms involved in pheromone-induced protein aggreagtion. Although
some of these models have been tested for their ability to fit quantitative data [17, 33, 19, 31, 13, 30,
14, 26, 23, 12], they have not been quantitatively assessed for their ability to make accurate predic-
tions with no additional free parameter. In the model presented here, we focus on the intracellular
actin-mediated transport of the protein Cdc42 which was shown to contribute to the initiation of cell
polarization via inhomogeneous protein distribution at the cell surface [38, 39], but see [27, 33, 36]
for a recent discussion about this hypothesis. Other factors, such as the Bem1-mediated positive
feedback e.g., are not present in the model considered here. Indeed, we believe it is of interest to
investigate the potentiality of a mass-preserving mechanism to account for symmetry breaking in the
cell content.

The present work is the continuation of our analysis program about a model which was first
introduced in [21], then studied in [9, 8] and finally tested for its ability to predict experimental
data in [32] at the level of a single cell. This model relies on a coarse-grained description of actin-
mediated transport and it is expressed by a non-linear and non-local partial differential equation.
Here, we enrich the single cell model, and we push further our mathematical analysis in order to
study pairwise cell-cell communication.

Although the present study is restricted to the one-dimensional setting, it is instructive to describe
a higher dimensional situation, say the two-dimensional setting for the sake of simplicity. Denoting
respectively by n(t, x) the concentration of the Cdc42 protein and by c(t, x) the density of actin
filaments in the cytoplasm of the cell (the bounded domain Ω ⊂ R2), and denoting by µ(t, s) the
concentration of Cdc42 on the membrane of the cell (Γ = ∂Ω), the model is:{

∂tn = ∆n− χ∇ · (n∇c) , in Ω ,

∂tµ = ∂ssµ+ n− µ , on Γ ,
(2.1)

where s is a parametrisation of the boundary Γ.
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The advection term χ∇c accounts for active transport of proteins along actin filaments. Nucle-
ation of new filaments is assumed to occur at the plasma membrane, under the combined action of
Cdc42 and external pheromone molecules. After a dimensional analysis, the model that describes
the actin filaments density is the following one:{

−∆ c = 0 , in Ω ,

−∇c · e = Sµ , on Γ ,
(2.2)

where e is the unit outward normal vector and S(t, s) is the trace of the pheromone external signal
on the cell membrane. Equations (2.1) and (2.2) are complemented by initial conditions and by an
additional boundary condition on the cell membrane which guarantees the conservation of the total
Cdc42 pool in the cell:

(∇n− χn∇c) · e = −∂tµ on Γ .

In the one dimensional case where the cytoplasm of the cell is modelled by the half line Ω = R+,
and the membrane is located at x = 0, the model (2.1)–(2.2) simply read as

∂tn = ∂xxn+ Sµ∂xn , t > 0 , x > 0 , (2.3)

with an additionnal flux boundary condition that assures mass conservation. This latter equation
has been analyzed in [9, 8, 28], its dynamics is well understood and is reminiscent of the Keller-
Segel model in two dimensions. The principal result of [8] was to identify regimes in which non
homogeneous stationary states, that were interpreted as polarised states, emerge.

In nature, the budding yeast, Saccharomyces cerevisiae, exists either in diploid state, or in haploid
state with two possible types (a or α). Cells of both types secrete some pheromone (Sa or Sα), Fig.
2, and bear a pheromone receptor to detect the pheromone produced by the cells of the opposite
type, [22]. In the present work we propose a model where the release of extra-cellular pheromone
(Sa or Sα) depends on the concentration of the protein Cdc42 at the membrane [34]. Furthermore,
according to the biological litterature, [29, 3, 35, 36], we assume that the pheromone contributes to
the nucleation of new filaments at the plasma membrane of the cell of the opposite type, see Fig 2. To
describe the protein dynamics on each cell membrane we use and enrich the model (2.3) in the one-
dimensional case. This leads to a coupled system of two non-linear transport-diffusion equations set
in two opposite half-lines. Throughout this work, the cell type is referred to by the subscript i = 1, 2.

This additional level of cellular pairwise communication leads to the following rectification of
the model (2.3): for the cell i, we consider that the advection field is −χSj(t)µi(t) where Sj is the
concentration of pheromone produced by the cell of the opposite type j. Moreover, in this work
we postulate that Sj is proportional to µj , which means that the pheromone produced by cell of
type i is influenced by the level of activation of the opposite cell, possibly discounted by a damping
factor depending on the inter-cellular distance (not explicitly written here). Thus, in both cells the
advection field is the same: −χµ1(t)µ2(t). From the biological point of view this model describes
whether proteins Cdc42 will mainly get attached to the membrane, or will mainly diffusive in the
bulk. The former event will be referred to as a ”polarized state” for each cell, as in [9, 8, 32]. The
case where both cells are polarized will be referred to as the ”dialog state” between the two cells.

3 The comparison principle and its consequences

We start noticing that there is no direct comparison principle on (1.2)–(1.3)–(1.4). In this section, we
first establish a concentration comparison principle on the cumulated distribution functions Ni (1.6),
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reminiscent of [28], and analogous to the radially symmetric Keller-Segel system, see for instance
[4, 24] and references therein. In a second step, we identify a family of sub/supersolutions that play
a pivotal role in the non-linear stability analysis.

3.1 The concentration-comparison principle

For i = 1, 2, the integrated quantities Ni(t, x) = µi(t) +
∫ x

0 ni(t, y) dy associated with (1.2)–(1.3)–
(1.4) and (1.5) satisfy

∂tNi(t, x)− ∂xxNi(t, x)− χµ1(t)µ2(t)∂xNi(t, x) = 0 ,

Ni(t, 0) = µi(t) , limx→∞Ni(t, x) = 1 ,
dµi
dt (t) = ∂xNi(t, 0)− µi(t) .

(3.1)

Definition 3.1. A supersolution (resp. subsolution) to (3.1) is a couple of nondecreasing functions
(with respect to x) (N1, N2) (resp. (N1, N2)) satisfying

∂tN i(t, x)− ∂xxN i(t, x)− χµ1(t)µ2(t)∂xN i(t, x) ≥ 0 ,

N i(t, 0) = µi(t) , limx→∞N i(t, x) = 1 ,
dµi
dt (t) ≥ ∂xN i(t, 0)− µi(t) ,

with similar definition for a subsolution by changing ≥ into ≤.

We now state the concentration comparison principle.

Lemma 3.2 (Comparison principle). Let (N1, N2) and (N1, N2) be respectively smooth super and
subsolution to (3.1) defined on [0, T ]× R+. Assume that for i = 1 , 2

(∀x ≥ 0) Ni(0, x) ≤ N i(0, x) , and µi(0) > µ
i
(0) .

Then, the following inequalities hold true for i = 1, 2,

(∀t ∈ (0, T )) (∀x ≥ 0) Ni(t, x) ≤ N i(t, x) .

Proof. For i = 1 , 2, denoting Fi = N i −N i, one has
∂tFi − ∂xxFi − χµ1(t)µ2(t)∂xFi ≥ χ

(
µ1(t)µ2(t)− µ

1
(t)µ

2
(t)
)
∂xN i ,

Fi(t, 0) = µi(t)− µi(t) , limx→∞ Fi(t, x) = 0 ,
d
dt

(
µi(t)− µi(t)

)
≥ ∂xFi(t, 0)− (µi(t)− µi(t)) ,

Fi(0, x) = N i(0, x)−Ni(0, x) ≥ 0 .

The bootstrap acts as follows. Since we are dealing with nondecreasing functions Ni, the quantity
χ
(
µ1(t)µ2(t)− µ

1
(t)µ

2
(t)
)
∂xN i is nonnegative as long as

µ1(t)µ2(t)− µ
1
(t)µ

2
(t) ≥ 0 ,

holds true. This is in particular the case if

µ1(t) ≥ µ
1
(t) and µ2(t) ≥ µ

2
(t) . (3.2)
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Recalling the assumption µi(0) > µ
i
(0), we denote by τ > 0 the first time for which an equality in

(3.2) occurs. Suppose without loss of generality that µ1(τ) = µ
1
(τ). Let us define the function z(t)

by
z(t) := µ1(t)− µ

1
(t) .

Then, for all (t, x) ∈ (0, τ)× (0,∞), one has
∂tF1(t, x)− ∂xxF1(t, x)− χµ1(t)µ2(t)∂xF1(t, x) ≥ 0 ,

F1(t, 0) = µ1(t)− µ
1
(t) = z(t) ≥ 0 , limx→∞ F1(t, x) = 0 ,

dz
dt (t) ≥ ∂xF1(t, 0)− z(t) .

Recalling in addition the assumption Fi(0, 0) > 0, it follows that there exists a nonnegative com-
pactly supported (in (0,+∞)) function f 6= 0 such that f(x) ≤ F1(0, x) and f(0) = 0. Next, we
consider the solution to the parabolic equation

∂tg(t, x)− ∂xxg(t, x)− χµ1(t)µ2(t)∂xg(t, x) = 0 ,

g(t, 0) = 0 ,

g(0, x) = f(x) .

On the one hand, it follows from the standard maximum principle [18] that F1 ≥ g on [0, τ ]× [0,∞).
On the other hand, classical parabolic regularity implies that g(t, x) > 0 for all (t, x) ∈ (0, τ ] ×
(0,∞). Hence, applying the Hopf Lemma [18], it follows that ∂xg(τ, 0) > 0. Next, from the
equality F1(τ, 0) = g(τ, 0) = 0, we deduce that ∂xF1(τ, 0) ≥ ∂xg(τ, 0) > 0. Consequently one has
d
dtz(τ) > 0 which contradicts z > 0 on [0, τ) and z(τ) = 0.

3.2 Remarkable sub/supersolutions

For any parameter µ ∈ (0, 1), the pair (Nµ, Nµ) is either a subsolution or a supersolution, depending

on the sign of P (µ) with P defined by (1.7) and Nµ(x) = µ+ (1− µ)
(

1− e−χµ2x
)

.

Lemma 3.3. The pair (Nµ, Nµ) where

Nµ(x) = µ+ (1− µ)(1− e−χµ2x),

is a supersolution (resp. a subsolution) to (3.1) if

P (µ) = χµ2 − χµ+ 1 ≥ 0 (resp. ≤ 0) .

Recall that P (µ) ≤ 0, hence (Nµ, Nµ) is a subsolution, if and only if µ ∈ [µ−, µ+]. However
the interval is empty if χ < 4. Indeed, in the latter case, the pair (Nµ, Nµ) is always a supersolution.
The various cases are reported in Table 1.

Proof. A straightforward computation yields the following identities:
∂tNµ − ∂xxNµ − χµ2∂xNµ = 0 ,

Nµ(0) = µ ,

∂xNµ(0)− µ = (1− µ)χµ2 − µ = −µ
(
χµ2 − χµ+ 1

)
.

The conclusion follows from the definition of P (1.7).
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4 Non-linear stability of (n+, µ+): proof of Proposition 1.2

We split the proof in several steps. We begin with the symmetric case where the cells are identical:
(n1, µ1) = (n2, µ2). Then, the result is extended to the general case by using the comparison
principle.

4.1 The symmetric case

In this part, we assume that (n0
1, µ

0
1) = (n0

2, µ
0
2) = (n0, µ0), so that the solutions (n1, µ1) and

(n2, µ2) = (n, µ) are always the same. We keep all the assumptions, in particular (1.5), i.e. Mi = 1.
We drop the subscript i = 1, 2 for the sake of clarity. Our goal is to prove Proposition 1.2 in the
symmetric case.{

∂tn(t, x)− ∂xxn(t, x)− χµ(t)2∂xn(t, x) = 0 , (t, x) ∈ (0,∞)2 ,

∂xn(t, 0) + χµ(t)2n(t, 0) = dµ
dt (t) = n(t, 0)− µ(t) .

(4.1)

The main argument is based on the construction of a suitable Lyapunov function, which is a
mixture of entropy and quadratic scalar contributions, similarly as for the case of a single cell [28],
see Lemma 4.1 below. Next, the assumptions made on the initial condition allow to obtain lower
bounds on the terms involved in entropy dissipation and to prove that the Lyapunov functional tends
to zero. The keystone is to establish that µ stays away from µ− in order to control the relaxation of
µ(t) towards µ+.

We define the Lyapunov functional L by:

L(t) := (1− µ(t))H(m(t, ·)|m+) =

∫ ∞
0

n(t, x) log
m(t, x)

m+(x)
dx ≥ 0 ,

where m+ is given by (1.8),H(n|p) is the relative entropy [2], and

m(t, x) =
n(t, x)∫∞

0 n(t, x) dx
=

n(t, x)

1− µ(t)
,

is the renormalized density in the bulk. In addition, the function f is defined by

f(µ) = µ log
µ

µ+
+ (1− µ) log

1− µ
1− µ+

+ χ
(µ− µ+)2(µ+ 2µ+)

3
.

The function f is designed such as f(µ+) = 0, and

f ′(µ) = log
µ(1− µ+)

µ+(1− µ)
+ χ

(
µ2 − µ2

+

)
. (4.2)

In particular, the function f is nonincreasing on (0, µ+) and nondecreasing on (µ+, 1), hence it is
nonnegative on (0, 1).

Lemma 4.1. Let (n, µ) be the solution to (4.1). The following inequality holds

d

dt

(
L(t) + f(µ(t))

)
≤ −D(t)2 − χ

(
µ(t)2 − µ2

+

)
µ(t)P (µ(t)) , (4.3)

where D2 is defined as

D2 =

∫ ∞
0

n
(
∂x log n+ χµ2

)2
dx = (1− µ)I

(
m|χµ2e−χµ

2x
)
,

and I(p|q) =
∫∞

0 p
(
∂x log p

q

)2
dx is the Fisher information.
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Proof of Lemma 4.1. The Lyapunov functional L can be rearranged as follows,

L =

∫ ∞
0

(n log n− n logm+ − n log(1− µ)) dx

=

∫ ∞
0

(n log n− n logm+) dx− (1− µ) log(1− µ) .

Hence, differentiating L, we obtain

dL

dt
=

∫ ∞
0

∂tn (1 + log n− logm+) dx+ (1 + log(1− µ))
dµ

dt
,

and using that
∫∞

0 n dx+ µ = 1, we get

dL

dt
=

∫ ∞
0

∂tn log
n

m+
dx+ log(1− µ)

dµ

dt
.

Next, using the definition of m+ (1.8), that (n, µ) is solution to (4.1), an integration by parts yields
the following identities:

dL

dt
=

∫ ∞
0

log
n

m+

(
∂xxn+ χµ2∂xn

)
dx+ log(1− µ)

dµ

dt

= −
(

log
n(t, 0)

m+(0)

)
dµ

dt
−
∫ ∞

0
n(∂x log n+ χµ2

+)(∂x log n+ χµ2) dx+ log(1− µ)
dµ

dt

= −
(

log
n(t, 0)

(1− µ)m+(0)

)
d

dt
µ−

∫ ∞
0

n(∂x log n+ χµ2)2 dx︸ ︷︷ ︸
=D2

+χ(µ2 − µ2
+)

∫ ∞
0

(∂xn+ χµ2n) dx

= −D2 −
(

log
n(t, 0)

(1− µ)m+(0)

)
dµ

dt
+ χ(µ2 − µ2

+)(−n(t, 0) + χµ2(1− µ)) .

Using now that d
dtµ = n(t, 0)− µ, we deduce that

dL

dt
= −D2 +

(
log

µ

n(t, 0)
+ log

(1− µ)m+(0)

µ

)
dµ

dt
+ χ(µ2 − µ2

+)

(
− dµ

dt
− µ+ χµ2(1− µ)

)
= −D2 + (n(t, 0)− µ) log

µ

n(t, 0)︸ ︷︷ ︸
≤0

+χ(µ2 − µ2
+)µ

(
−χµ2 + χµ− 1

)

+

(
χµ2

+ − χµ2 + log
(1− µ)χµ2

+

µ

)
dµ

dt
.

The conclusion follows by using the definitions of f (4.2) and P (1.7), which in turn implies χµ2
+ =

µ+
1−µ+ .

An important observation is that, for all µ ∈ [µ−, 1], the quantity (µ2−µ2
+)P (µ) is nonnegative.

As a consequence, the second contribution in the r.h.s. of (4.3) is dissipative provided µ(t) remains
above µ−. Such an a priori control enables to prove that L + f converges to zero with an algebraic
rate.

Lemma 4.2. Under the same assumptions as in Proposition 1.2, there exists a constant C depending
on (µ

0
, µ0) such that

d

dt

(
L(t) + f(µ(t)

)
≤ −C

(
L(t) + f(µ(t)

)2
.
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Proof of Lemma 4.2. We first note that Nµ
0
(x) is a subsolution, whereas Nµ0(x) is a supersolution,

see Lemma 3.3 and (1.9) (see also Table 1). As the initial data are well ordered by assumption (1.10),
we deduce from the comparison principle in Lemma 3.2 that

∀(t, x) ∈ (0,∞)× R+ , Nµ
0
(x) ≤ N(t, x) ≤ Nµ0(x) . (4.4)

In particular, we have µ(t) ≥ µ
0
> µ−. Hence, (µ(t)2 − µ2

+)P (µ(t)) is nonnegative. Furthermore,
the family of functions Nµ is increasing with respect to µ, thus

Nµ
0
(x) ≤ µ(t) + (1− µ(t))

(
1− e−χµ(t)2x

)
≤ Nµ0(x) . (4.5)

Using the quadratic Wasserstein distance W , whose definition is recalled in the Appendix, together
with the definition of m(t, x) = n(t,x)∫∞

0 n(t,x) dx
= n(t,x)

1−µ(t) , we see that

W
(
m,χµ2e−χµ

2x
)

=
1√

1− µ
W
(
µδ0 + (1− µ)m,µδ0 + (1− µ)χµ2e−χµ

2x
)
,

where δ0 is the Dirac mass in x = 0. The bounds on N and Nµ in (4.4) and (4.5), allow to apply
lemma B.3 to obtain

W
(
µδ0 + (1− µ)m,µδ0 + (1− µ)χµ2e−χµ

2x
)
≤ CW (µ

0
, µ0) ,

where

CW (µ
0
, µ0) = W

(
µ

0
δ0 + (1− µ

0
)χµ2

0
e−χµ

2
0
x, µ0δ0 + (1− µ0)χµ2

0e
−χµ20x

)
< +∞ .

Then, applying the HWI inequality, see Lemma B.6 in the Appendix, to the exponential measure
χµ2e−χµ

2x, we obtain that

D2 = (1− µ) I
(
m|χµ2e−χµ

2x
)
≥ (1− µ)

H
(
m|χµ2e−χµ

2x
)

W
(
m,χµ2e−χµ2x

)
2

≥ (1− µ)2

H
(
m|χµ2e−χµ

2x
)

CW (µ
0
, µ0)

2

. (4.6)

Recalling the definition of the relative entropy,H(n|p) =
∫∞

0 n log (n/p) dx, we see that

H
(
m|χµ2e−χµ

2x
)

=
1

1− µ

(1− µ)H (m|m+)︸ ︷︷ ︸
=L

+∆(µ)

 ,

where the correction ∆(µ) is defined by

∆(µ) = (1− µ)

(
log

µ2
+

µ2

)∫ ∞
0

m dx+ χ(1− µ)(µ2 − µ2
+)

∫ ∞
0

xmdx .

We deduce from (4.3) and (4.6) that

d

dt
(L+ f(µ)) ≤ − (L+ ∆(µ))2

(1− µ)CW (µ
0
, µ0)2

− χ(µ2 − µ2
+)µP (µ) ≤ 0 .
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Noticing additionally that

(L+ f)2 = (L+ ∆)2 + (f −∆)2 + 2(L+ ∆)(f −∆) ≤
(

1 +
1

α

)
(L+ ∆)2 + (1 + α) (f −∆)2 ,

we see that for any α > 0, we have

d

dt
(L+ f(µ)) ≤ −1

(1− µ)CW (µ
0
, µ0)2

(
α

1 + α
(L+ f(µ))2 − α(f(µ)−∆(µ))2 +R(µ)

)
,

where R(µ) = χCW (µ
0
, µ0)2µ(1− µ)(µ2 − µ2

+)P (µ).
It is useful to notice that

∫
xmdx is uniformly bounded, as it follows from the estimate (4.4)

together with an integration by parts:∫ ∞
0

xm(t, x) dx =
1

1− µ

∫ ∞
0

(1−N(t, x)) dx ≤ 1

1− µ̄0

∫ ∞
0

(
1−Nµ

0

)
dx =

1− µ
0

χµ2
0
(1− µ̄0)

.

(4.7)
Therefore, both |∆| and |f | are O(|µ−µ+|) in (µ

0
, 1). we deduce that (f(µ)−∆(µ))2 = O(R(µ))

in a neighbourhood of µ+, as µ+ is a root of P . Hence, there exists a constant α0 > 0 such that

(∀µ ∈ (µ
0
, 1)) − α0(f(µ)−∆(µ))2 +R(µ) ≥ 0 .

Choosing C = α0
(1+α0)(1−µ

0
)CW (µ

0
,µ0)2

, this achieves the proof of Lemma 4.2.

Corollary 4.3. Under the same assumptions as in Proposition 1.2, the following estimates hold

(∀t > 0) , 0 ≤
∫ ∞

0
n(t, x) log

m(t, x)

m+(x)
dx+ (µ(t)− µ+)2 ≤ C

1 + t
, (4.8)

and
∀t > 0 , ‖n− n+‖L1(R+) ≤

C√
1 + t

, (4.9)

where n+ = (1− µ+)m+ (1.8).

Proof. The first inequality is a direct consequence of lemma 4.2. The second one is obtained by the
triangle inequality:

‖n− (1− µ+)m+‖L1(R+) ≤ (1− µ)‖m−m+‖L1(R+) + |µ− µ+| ,

We apply finally the Csiszar-Kullbáck inequality (see proposition B.7):

‖m−m+‖L1(R+) ≤
√

2H(m|m+) ≤

√
2L(t)

1− µ(t)
,

from which we can deduce (4.9), based on (4.8).
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4.2 Refined estimates of convergence for special solutions

On the way to extending the previous result to the general, non symmetric case, further estimates of
convergence are required. Below, we focus on two families of solutions, those which are initialized
with Nµ

0
(x), resp. Nµ0(x), where µ

0
and µ0 are as in Proposition 1.2. This is of particular interest

as any solution of the general problem with suitable initial data fits in between these two solutions,
due to the comparison principle 3.2. For the sake of brevity, we denote by (µ, n), resp. (µ, n) the
solution of the symmetric problem with the initial data corresponding to Nµ

0
(x), resp. Nµ0(x).

Corollary 4.3 asserts that the error µ(t) − µ+ is of order (1 + t)−1/2 at most. However, it
is possible to gain a better rate of convergence for (µ, n), in integral form, or alternatively in the
Wasserstein distance W1 (which accounts for a weaker convergence than the L1 norm).

Lemma 4.4. Under the same assumptions as in Proposition 1.2, the error (µ − µ+) belongs to
L1(R+). Furthermore, there exist a constant C, such that the following estimates hold true∫ ∞

t
|µ(s)− µ+| ds ≤ C√

1 + t
, (4.10)

W1(µδ0 + n, µ+δ0 + n+) ≤ C√
1 + t

. (4.11)

|µ̄− µ+| ≤
C√
1 + t

. (4.12)

Similar results hold for (µ, n).

Proof. The last inequality (4.12) follows from (4.8) which was established in corollary 4.3. Let us
start with the first point of the Lemma. Since µ − µ+ ≥ 0, the absolute value can be removed in
(4.10). Recall that the Wasserstein distance W1 involves the L1 norm of the cumulated distribution
function: if we define N̄ and N+ as in (1.6) for (µ̄, n̄) and (µ+, n+) respectively, one has

W1(µδ0 + n|µ+δ0 + n+) =

∫ ∞
0
|N −N+| dx =

∫ ∞
0

(
N −N+

)
dx

=

∫ ∞
0

x (n+ − n) dx , (4.13)

recalling that n+ does not depend on time, we deduce that,

d

dt
W1(µδ0 + n|µ+δ0 + n+) = − d

dt

∫ ∞
0

xn̄ dx

=

∫ ∞
0

(∂xn̄+ χµ̄2n) dx

= −n̄(t, 0) + χµ̄2(1− µ̄)

= − d

dt
µ− µP (µ) ,

and

d

dt
(µ− µ+ +W1(µδ0 + n|µ+δ0 + n+)) = −µP (µ)

≤ −µ+P
′(µ+)(µ− µ+) ≤ 0 , (4.14)
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by the convexity of P and P (µ+) = 0. In particular, we deduce that∫ ∞
0
|µ(t)− µ+|dt ≤

1

µ+P ′(µ+)

(∫ ∞
0
|Nµ0(x)−N+(x)|dx+ µ0 − µ+

)
< +∞ ,

which is the first statement in the Lemma. In order to proceed with the latter estimates (4.10)–(4.11),
we shall re-use the entropy part of the error estimate (4.8). Indeed, this provides some information
about the first order moments, as stated in the following intermediate result.

Lemma 4.5. Let p be a probability distribution on R+ such that for some λ > 0, the following
relative entropy is finite:

H
(
p|λe−λx

)
=

∫ ∞
0

p log
p

λe−λx
dx < +∞ .

Denote J =
∫∞

0 xpdx. It is finite and is controlled as follows:

H
(
p|λe−λx

)
≥ H

(
p| 1
J
e−

x
J

)
+

(
J − λ−1

)2
2 (λ−2 + J2)

.

Proof of Lemma 4.5. A straightforward computation gives

H
(
p|λe−λx

)
= H

(
p| 1
J
e−

x
J

)
+ log

1

Jλ
+

(
λ− 1

J

)∫ ∞
0

xp dx

≥ H
(
p| 1
J
e−

x
J

)
+ λJ − 1− log (λJ) ,

and the result follows from a Taylor expansion

z − 1− log z ≥ (z − 1)2

2 max(1, z2)
≥ (z − 1)2

2(1 + z2)
.

Keeping the notation m̄ = (1 − µ̄)n̄, as a direct application of Lemma 4.5 and (4.8), together
with the a priori bound (4.7), we obtain that there is a constant C such that(∫ ∞

0
xm dx− 1

χµ2
+

)2

≤ C
∫ ∞

0
n log

m

m+
dx ≤ C

1 + t
.

This enables to improve the previous estimation (4.13):

W1(µδ0 + n|µ+δ0 + n+) ≤ (1− µ+)

∫ ∞
0

xm+ dx− (1− µ)

∫ ∞
0

xmdx

≤ (µ− µ+)

∫ ∞
0

xm+ dx+ (1− µ)

(∫ ∞
0

xm+ dx−
∫ ∞

0
xm dx

)
≤ C√

1 + t
,

where we have also used the error estimate |µ− µ+| = O
(
(1 + t)−1/2

)
. Finally, integrating (4.14)

between t and +∞, it follows that

µ+P
′(µ+)

∫ ∞
t

(µ− µ+) ds ≤W1(µδ0 + n|µ+δ0 + n+) + µ− µ+ ≤
C√
1 + t

,

which ends the proof of the Lemma 4.4.
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Corollary 4.6. Under the same assumptions as in Proposition 1.2, one has

∀p ≥ 1 ,

∫ ∞
t
|µ(s)− µ(s)|p ds ≤ Cp

(1 + t)p/2
,

and ∫ t

0
(1 + s)|µ(s)− µ(s)|2 ds ≤ C(1 + log(1 + t)) . (4.15)

Proof of Corollary 4.6. From corollary 4.3 we already have sups≥t |µ(s)− µ(s)|2 ≤ C
1+t . We com-

pute ∫ ∞
t
|µ− µ|p ds ≤ sup

s≥t
|µ− µ|p−1

∫ ∞
t
|µ− µ|ds ≤ Cp

(1 + t)p/2
.

Additionnaly, we have∫ t

0
(1 + s)|µ− µ|2 ds =

[
−(1 + s)

∫ ∞
s
|µ− µ|2 dy

]t
0

+

∫ t

0

∫ ∞
s
|µ− µ|2 dy ds

≤ C + C

∫ t

0

ds

1 + s
,

leading to the result.

4.3 The nonsymmetric case

We are now ready to prove Proposition 1.2 without the symmetry hypothesis. As a direct application
of the comparison principle, N(t, ·)→ N+ in L1 norm (i.e. inW1 distance between n and n+). This
can be reinforced to the convergence n(t, ·) → n+ in L1 norm using the relative entropy, as in the
symmetric problem.

As before, we introduce the Lyapunov functional Li and the dissipation Di by

Li(t) = (1− µi)H(mi|m+) , D2
i = (1− µi)I(mi|χµ1µ2e

−χµ1µ2x) ,

Performing similar computations as in Section 4.1, we obtain

d

dt
(L1 + L2) =

∑
i=1,2

(
−D2

i +

(
log

µi
ni(t, 0)

)
dµi
dt

+

(
log

(1− µi)m+(0)

µi

)
dµi
dt

+ χ
(
µ1µ2 − µ2

+

)
(−ni(t, 0) + χµ1µ2(1− µi))

)
. (4.16)

Let the function flog be defined by

flog(µ+) = 0 , f ′log(µ) = log
µ

(1− µ)m+(0)
= log

µ(1− µ+)

(1− µ)µ+
.

We observe that f ′log(µ+) = 0 and the second derivative satisfies f ′′log(µ) > 0 for µ ∈ (0, 1). Hence,
locally in the neighborhood of µ+, the function flog behaves as (µ− µ+)2.

Following (4.16), using that µ1µ2 =
(µ1+µ2

2

)2 − (µ1−µ22

)2
and recalling that d

dtµi = ni(t, 0)−
µi, we obtain

χ(µ1µ2 − µ2
+)(n1(t, 0) + n2(t, 0)) = 2

d

dt

(
g

(
µ1 + µ2

2

))
+ χ

((
µ1 + µ2

2

)2

− µ2
+

)
(µ1 + µ2)− χ(µ1 − µ2)2

4
(n1(t, 0) + n2(t, 0)) ,
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where the function g is defined by

g(µ) = χ

(
µ3

3
− µ2

+µ+ 2
µ3

+

3

)
= χ

(µ− µ+)2(µ+ 2µ+)

3
, g′(µ) = χ

(
µ2 − µ2

+

)
.

We combine these contributions into the following functional L̃:

L̃(t) = L1(t) + L2(t) + flog(µ1(t)) + flog(µ2(t)) + 2g

(
µ1(t) + µ2(t)

2

)
.

From the comparison principle and the HWI inequality, it follows that there exists a positive constant
C such that D2

1 + D2
2 ≥ C

(
L2

1 + L2
2

)
, as in the proof of Lemma 4.2 – estimate (4.6). Hence the

dissipation estimate (4.16) becomes

dL̃

dt
(t) ≤− C

(
L1(t)2 + L2(t)2

)
+ h(µ1(t), µ2(t)) +R(t) ,

where

R(t) = − log
n1(t, 0)

µ1
(n1(t, 0)− µ1)− log

n2(t, 0)

µ2
(n2(t, 0)− µ2)

+ χ
(µ1 − µ2)2

4
(n1(t, 0) + n2(t, 0)) , (4.17)

and h is defined by

h(µ1, µ2) = χ2µ1µ2

(
µ1µ2 − µ2

+

)
(2− µ1 − µ2)− χ

((
µ1 + µ2

2

)2

− µ2
+

)
(µ1 + µ2) .

Since h(µ+, µ+) = 0,∇h(µ+, µ+) = 0, and the matrix∇2h|(µ+,µ+) is symmetric definite negative,
then, locally in the neighborhood of (µ+, µ+), there exists a positive constant C such that

h(µ1, µ2) ≤ −C
(
(µ1 − µ+)2 + (µ2 − µ+)2

)
≤ −C

(
flog(µ1(t)) + flog(µ2(t))

)
.

Therefore, for t ≥ t0 large enough, so that the µi are close enough to µ+, up to a change of the value
of the constant C > 0, we have

d

dt
L̃(t) ≤ −CL̃(t)2 +R(t) , (4.18)

Note that in the symmetric case, it is possible to conclude from this stage, as done previously.
However, in the general case, the additional contribution involving (µ1 − µ2)2 in (4.17) requires
more work to handle with. It follows from inequality (4.18) that L̃ is bounded. Indeed, denoting
F (t) = (1 + t)L̃(t), we see that the previous inequality (4.18) rewrites as

F ′(t) ≤ L̃(t)− C(1 + t)L̃(t)2 + (1 + t)R(t) ,

from which we deduce that

F ′(t) ≤ 1

1 + t
(F − CF 2) + (1 + t)R(t) .
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We first notice the obvious upper bound F − CF 2 ≤ (4C)−1, so that we have

F (t) ≤ F (0) +
1

4C
log(1 + t) +

∫ t

0
(1 + s)R(s) ds .

In order to estimate the last term, we observe that R = R1 +R2, where

Ri(t) := − log
ni(t, 0)

µi
(ni(t, 0)− µi) + χ

(µ1 − µ2)2

4
ni(t, 0)

= (ni(t, 0)− µi)
(
− log

ni(t, 0)

µi
+ χ

(µ1 − µ2)2

4

)
+ χ

(µ1 − µ2)2

4
µi .

The first contribution in the right hand-side of the previous equality is nonnegative if and only if

µi ≤ ni(t, 0) ≤ µieχ
(µ1−µ2)

2

4 .

Moreover, we see that

Ri(t) ≤ χµi
(µ1 − µ2)2

4

(
eχ

(µ1−µ2)
2

4 − 1

)
+ χ

(µ1 − µ2)2

4
µi .

Then, using the mean value theorem and adding R1 +R2, we have

R(t) ≤ C(µ1 − µ2)2 ≤ C(µ− µ)2 ,

by the comparison principle, where µ and µ are defined as in Section 4.2. Hence recalling (4.15), we
deduce that ∫ t

0
(1 + s)R(s) ds ≤ C(1 + log(1 + t)) .

So that, we finally obtain
F (t)− F (0) ≤ C(1 + log(1 + t)) ,

and therefore

L̃(t) ≤ C 1 + log(1 + t)

(1 + t)
.

The statements of Proposition 1.2 follow from this entropy estimate as in Corollary 4.3.

5 Self-similar decay: proof of Proposition 1.3

As in the previous section, we consider successively the symmetric case and the general case.

5.1 Self-similar decay in the symmetric case

It is natural to perform the following parabolic rescaling in order to catch the self-similar behaviour:

n(t, x) =
1√

1 + 2t
u

(
1

2
log(1 + 2t),

x√
1 + 2t

)
=

1√
1 + 2t

u (τ, y) ,

which is mass-preserving∫ ∞
0

u(τ, y) dy =

∫ ∞
0

n

(
e2τ − 1

2
, x

)
dx = 1− µ

(
e2τ − 1

2

)
= 1− ν(τ) ,
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where we have set µ(t) = µ
(
e2τ−1

2

)
= ν(τ). Since (n, µ) is solution to (4.1), (u, ν) satisfies the

following boundary value problem:{
∂τu(τ, y)− ∂yyu(τ, y)− ∂y(yu(τ, y))− χν(τ)2eτ∂yu(τ, y) = 0 , (τ, y) ∈ (0,∞)2 ,
dν
dτ (τ) = ∂yu(τ, 0) + χν(τ)2eτu(τ, 0) = eτu(τ, 0)− e2τν(τ) ,

with the same initial data as in the original variables. Note that the additional left-sided drift
∂y(yu(τ, y)) contributes to confine the mass in the new frame (τ, y).

Then, Proposition 1.3 is a consequence of the following formulation in self-similar variables (in
the symmetric case):

Proposition 5.1. Under the same assumptions as in Proposition 1.3, the following convergence
estimates hold true:

ν(τ) +

∫ ∞
0

u log
u

(1− ν)G
≤ Ce−τ .

In particular, it follows from the Csiszar-Kullbáck inequality that

‖u−G‖1 ≤ Ce−
τ
2 .

Proof of Proposition 5.1. We split the proof into several intermediate results. We start by establish-
ing bounds on the first and second moments and then we prove entropy dissipation.

Lemma 5.2. There exist two constants M1 and M2 depending only on∫∞
0 y2u(0, y) dy such that

∀τ > 0 ,

∫ ∞
0

yu(τ, y) dy ≤M1 and
∫ ∞

0
y2u(τ, y) dy ≤M2 .

Proof of Lemma 5.2. We first see that

d

dτ

∫ ∞
0

y2u(τ, y) dy = 2(1− ν(τ))− 2χν(τ)2eτ
∫ ∞

0
yu(τ, y) dy − 2

∫ ∞
0

y2u(τ, y) dy ,

≤ 2− 2

∫ ∞
0

y2u(τ, y) dy

from which it follows that∫ ∞
0

y2u(τ, y) dy ≤M2 = max

(
1,

∫ ∞
0

y2u(0, y) dy

)
.

Using the Cauchy-Schwarz inequality, we deduce that∫ ∞
0

yu(τ, y) dy ≤
√

1− ν(τ)
√
M2 ≤

√
M2 =: M1 .

Let us now prove entropy dissipation. To do so, we compare the solution u to the normalized
gaussian G on the half line. We begin with some notations. Let the renormalized density v such that
u(τ, y) = (1− ν(t))v(τ, y). Consider the following Lyapunov functional L:

L(τ) = (1− ν(τ))H(v(τ, ·)|G)︸ ︷︷ ︸
L1

+H(1− ν(τ))︸ ︷︷ ︸
L2

+G(0)e−τH

(
ν(τ)

G(0)e−τ

)
︸ ︷︷ ︸

L3

+
χ

3
ν(τ)3︸ ︷︷ ︸
L4

, (5.1)
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where H(x) = x log x − x + 1 and where we have defined various contributions Li that will be
studied separately. Since H and H is non-negative, L is also non-negative. Notice that L can be
written alternatively as

L(τ) =

∫ ∞
0

u(τ, y) log
u(τ, y)

G(y)
dy + ν(τ) log

ν(τ)

G(0)e−τ
+G(0)e−τ +

χ

3
ν(τ)3 . (5.2)

Finally, let introduce the following auxiliary function that will play a pivotal role:

Gν;τ (y) =
e−χν

2eτy− y
2

2∫∞
0 e−χν

2eτ z− z2
2 dz

. (5.3)

Also, recall the definition of the Fisher information:

I
(
u|Gν(τ);τ

)
=

∫ ∞
0

u(τ, y)
(
∂y log u(τ, y) + y + χν(τ)2eτ

)2
dy ≥ 0 . (5.4)

In the following Lemma we obtain upper bounds on dL
dτ (τ).

Lemma 5.3. The following upper bound holds true:

dL
dτ

(τ) ≤ −I
(
u|Gν(τ);τ

)
+ ν(τ)−G(0)e−τ

+ χν(τ)2eτ
∫ ∞

0
yu(τ, y) dy − χν(τ)3e2τP (ν(τ)) , (5.5)

where the polynomial function P is defined by (1.7).

Proof of lemma 5.3. Differentiating (5.2), we obtain

dL
dτ

(τ) =

∫ ∞
0

log
u(τ, y)

G(y)
∂τu(τ, y) dy +

(
log

ν(τ)

G(0)e−τ
+ χν(τ)2

)
dν

dτ
(τ) + ν(τ)−G(0)e−τ

= −
(

log
u(τ, 0)

G(0)

)
dν

dτ
(τ) +

(
log

ν(τ)

G(0)e−τ
+ χν(τ)2

)
dν

dτ
(τ) + ν(τ)−G(0)e−τ

−
∫ ∞

0
u(τ, y) (∂y log u(τ, y) + y)

(
∂y log u(τ, y) + y + χν(τ)2eτ

)
dy

= −
(

log
u(τ, 0)

ν(τ)eτ

)
dν

dτ
(τ) + ν(τ)−G(0)e−τ + χν(τ)2eτu(τ, 0)− χν(τ)3e2τ

−
∫ ∞

0
u(τ, y) (∂y log u(τ, y) + y)

(
∂y log u(τ, y) + y + χν(τ)2eτ

)
dy .

Using the definition (5.4) of I
(
u|Gν(τ);τ

)
, we have

dL
dτ

(τ) ≤ −I
(
u|Gν(τ);τ

)
+ ν(τ)−G(0)e−τ + χν(τ)2eτu(τ, 0)− χν(τ)3e2τ

+ χν(τ)2eτ
∫ ∞

0
u(τ, y)

(
∂y log u(τ, y) + y + χν(τ)2eτ

)
dy

≤ −I
(
u|Gν(τ);τ

)
+ ν(τ)−G(0)e−τ

+ χν(τ)2eτ
∫ ∞

0
yu(τ, y) dy +

(
χν(τ)2eτ

)2
(1− ν(τ))− χν(τ)3e2τ

≤ −I
(
u|Gν(τ);τ

)
+ ν(τ)−G(0)e−τ

+ χν(τ)2eτ
∫ ∞

0
yu(τ, y) dy − χν(τ)3e2τP (ν(τ)) ,
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which is the estimate (5.5).

Several lower bound on the relative entropy are required to control entropy dissipation.

Lemma 5.4. The following inequality holds true

I (u|Gν;τ ) ≥ 2L1 − 2χν2eτ
∫ ∞

0
y ((1− ν)G− u) dy .

Proof of Lemma 5.4. Recalling the definition (5.3) ofGν;τ , the logarithmic Sobolev inequality (Lemma
B.5) yields that

I (u|Gν;τ ) ≥ 2

∫ ∞
0

u log
u

(1− ν)Gν;τ
dy .

The latter term can be decomposed as follows,∫ ∞
0

u log
u

(1− ν)Gν;τ
dy =

∫ ∞
0

u log
u

(1− ν)G
dy︸ ︷︷ ︸

L1

+

∫ ∞
0

u log
G

Gν;τ
dy .

Using Jensen’s inequality, we have

log
G

Gν;τ
= χν2eτy + log

∫∞
0 e−χν

2eτ z− z
2

2 dz∫∞
0 e−

z2

2 dz

≥ χν2eτy −
∫ ∞

0
χν2eτzG(z) dz .

This completes the proof of Lemma 5.4.

We can now derive a quantitative rate of convergence.

Lemma 5.5. There exists a positive constant C such that

L(τ) ≤ Ce−τ .

Proof of Lemma 5.5. Injecting the result of Lemma 5.4 into inequality (5.5), it follows that

dL
dτ

(τ) ≤ −2L1 + ν −G(0)e−τ − χν2eτ
∫ ∞

0
yudy

+ 2χν2eτ
∫ ∞

0
y(1− ν)G dy − χν3e2τP (ν)

≤ −2L1(τ) + ν −G(0)e−τ + 2χν2eτ (1− ν)G(0)− χν3e2τP (ν) .

Under the assumptions of Proposition 5.1, there exists P0 > 0 such that P (ν(τ)) ≥ P0 for all
τ ≥ 0. Indeed, either χ ≥ 4 and P (µ(t)) ≥ P (µ0) by the comparison principle (Lemma 3.2), or
χ < 4 and P is uniformly bounded from below.

To conclude, let add 2L on both sides in order to get

dL
dτ

(τ) + 2L(τ) ≤ ν −G(0)e−τ − χν3e2τP0 + 2χG(0)ν2eτ + 2L2(τ) + 2L3(τ) + 2L4(τ) .
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From the definitions of L2, L3 and L4 (5.1), we see that

L2(τ)e2τ = ((1− ν) log(1− ν) + ν) e2τ ≤ νe2τ ,

L3(τ)e2τ = G(0)eτH

(
νeτ

G(0)

)
= νe2τ log

νeτ

G(0)
− νe2τ +G(0)eτ

L4(τ)e2τ =
χ

3
ν3e2τ ≤ χ

3
νe2τ .

Consequently, we obtain
d

dτ
(e2τL(τ)) ≤ eτh(νeτ ),

where the function h is defined by

h(z) = −χP0z
3 + 2χG(0)z2 + 2z log

z

G(0)
+G(0) + z +

χ

3
z .

The function h is clearly bounded from above. Therefore, after integration between 0 and τ , we
obtain

L(τ)e2τ ≤ L(0) + eτ suph ,

L(τ) ≤ (L(0) + suph) e−τ .

This concludes the proofs of Lemma 5.5 and Proposition 5.1.

5.2 Self-similar decay in the nonsymmetric case

In the general case, the solution can be bounded from above by the special solution of the symmetric
problem initialized by (Nµ0 , Nµ0), due to the comparison principle (Lemma 3.2 and 3.3). We deduce
the following rate of convergence:

νi(τ) ≤ Ce−τ , i = 1, 2 .

With similar notations as before, we define the Lyapunov functionals L(i)
gen by

L(i)
gen(τ) = L(i)

1 + L(i)
2 + L(i)

3 , i = 1, 2 ,

where each L(i)
j is defined as in (5.1), but involving ui, νi. An important point here is that it does not

contain the correction term L4. Following the previous computations, we obtain

d

dτ
L(i)

gen(τ) ≤ −I(i) + νi −G(0)e−τ − χν1ν2e
τui(τ, 0) + χνiν1ν2e

2τ

+ χν2
i e
τ

∫ ∞
0

yui(τ, y) dy − χνiν1ν2e
2τP (νi(τ)) ,

where we have denoted

I(i) =

∫ ∞
0

ui (∂y log y + y + χν1ν2e
τ )2 dy .

Using the estimate νi ≤ Ce−τ , this leads to

d

dτ
L(i)

gen(τ) ≤ −I(i) + Ce−τ .

Using similar computations as before, we obtain

L(i)
gen(τ) ≤ Ce−τ .

This concludes the proof of Proposition 1.3.
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A Linear stability analysis: proof of Proposition 1.1

The linear stability analysis involves a series of Lemma.

Lemma A.1. The steady states (ni, µi)i=1,2 of the system (1.2)–(1.3)–(1.4) with (1.5) satisfy ni = n
and µi = µ, for i = 1, 2, where (n, µ) is solution to{

n(x) = µ exp
(
−χµ2 x

)
, x ≥ 0 ,

0 = χµ2 − χµ+ 1 .
(A.1)

Such a steady state exists iff χ ≥ 4. Moreover, in the case where χ > 4, there are two steady states,
(µ−e

−χµ2−x, µ−) and (µ+e
−χµ2+x, µ+) with 0 < µ− < µ+ < 1.

Proof. The only part to prove is that any steady state has identical values for the two cells. A
straightforward computation yields that (ni, µi)i=1,2 satisfies, for i = 1 and 2, the following system:{

ni(x) = µi exp (−χµ1µ2 x) , x ≥ 0 ,

0 = χµ1µ2 − χµi + 1 .
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From the second equation in the previous system it follows that µ1 = µ2, hence it yields to (A.1)
which admits a real solution µ iff χ ≥ 4.

Lemma A.2. Assume that χ > 4, and let µ ∈ {µ−, µ+}. The linearized system associated to (1.2)–
(1.3)–(1.4) with (1.5) does not admit 0 as an eigenvalue. Moreover, a complex λ 6= 0 satisfying
<(λ) ≥ 0 is an eigenvalue of the linear system if and only if it satisifies(

χµ2 + β1

) (
λ+ 2

χ2 µ4

λ
+ 1

)
+ 2χµ2 − λ = 0 , (A.2)

where β1 is the unique root of the equation X2 + χµ2X − λ = 0 satisfying <(β1) < −χµ2.

Proof of Lemma A.2. Let us consider zero mass perturbations around the steady state (n, µ) solution
to (A.1). For i = 1 or 2, we seek the first order modes as follows

ni(t, x) = n(x) + ñi(x) exp (λ t) + higher order terms , x ≥ 0 ,

µi(t) = µ+ µ̃i exp (λ t) + higher order terms ,

0 =

∫ +∞

0
ñi(t, x) dx+ µ̃i ,

(A.3)

where λ ∈ C is some eigenvalue. We linearize (1.2)–(1.3)–(1.4) and we obtain two systems for
i = 1, 2: 

λ ñi(x) = ñ′′i (x) + χµ2 ñ′i(x)− χ2 µ4 exp
(
−χµ2 x

)
(µ̃1 + µ̃2) ,

λ µ̃i = ñi(0)− µ̃i ,
λ µ̃i = ñ′i(0) + χµ2 (ñi(0) + µ̃1 + µ̃2) .

(A.4)

We first investigate the condition for having <(λ) ≥ 0 (linear instability). In the case where χ > 4,
the roots of X2 + χµ2X − λ = 0 are

β1 =
−χµ2 −

√
χ2 µ4 + 4λ

2
and β2 =

−χµ2 +
√
χ2 µ4 + 4λ

2
.

Here we have abusively denoted by
√
χ2 µ4 + 4λ the only complex number with positive real part

satisfying z2 = χ2 µ4 + 4λ. With these notations, we have <(β1) ≤ −χµ2, <(β2) ≥ 0, the
inequalities being strict as soon as we have λ 6= 0. Hence, the solution to (A.4) can be written as:ñi(x) = Ci exp(β1 x) +Di exp(β2 x)− χ2 µ4

λ exp
(
−χµ2 x

)
(µ̃1 + µ̃2) , if λ 6= 0

ñi(x) = Ci exp(−χµ2 x) +Di − χµ2 x exp
(
−χµ2 x

)
(µ̃1 + µ̃2) , if λ = 0

The perturbations must be integrable, so that Di = 0.
We first establish that λ = 0 cannot be an eigenvalue. Indeed from (A.4) we deduce thatCi = µ̃i.

Then, the zero integrability condition in (A.3) yields that µ̃i = χµ2µ̃j , i 6= j, and thus χ2µ4 = 1
if µ̃i 6= 0. This can only happen if χ = 4 and µ = 1

2 . Consequently 0 is not an eigenvalue for the
linearized system for χ > 4. From now on, we can assume that

<(λ) ≥ 0, λ 6= 0, <(β1) < −χµ2 .

The last two equations of (A.4) now read as the two systems{
(λ+ 1) µ̃i − Ci = −χ2 µ4

λ (µ̃1 + µ̃2) ,

λ µ̃i −
(
χµ2 + β1

)
Ci = χµ2 (µ̃1 + µ̃2) .

, i = 1, 2 . (A.5)
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Since χµ2β1 + β2
1 = λ, we notice that

det

λ+ 1 −1

λ −(χµ2 + β1)

 = (χµ2 + β1)︸ ︷︷ ︸
6=0

(−λ− 1 + β1)︸ ︷︷ ︸
<(·)<−χµ2−1

6= 0 .

This provides the additional informations C1 = C2 = C and µ̃1 = µ̃2 = µ̃. Writing back system
(A.5) in terms of C, µ only, the existence of a nonzero solution to (A.5) is then equivalent to the
degeneracy of the obtained system i.e. (A.2) is fullfilled.

Lemma A.3. There exists an eigenvalue with nonnegative real part<(λ) ≥ 0 if and only if χµ2 ≤ 1.

Proof of lemma A.3. We argue by contradiction. Denoting by x = λ
χ2 µ4

and γ = χµ2 and recalling
the expression of β1, equation (A.2) is equivalent to the following one:

γ

2

((
1−
√

1 + 4x
) (

γ2 x+
2

x
+ 1

)
+ 4− 2 γ x

)
= 0 . (A.6)

It is convenient to introduce 2z =
√

1 + 4x− 1, such that 4x = (2z + 1)2 − 1 = 4z(z + 1). Notice
that λ has a nonnegative real part <(λ) ≥ 0 if and only if z has a nonnegative real part <(z) ≥ 0.
The equation (A.6) is equivalent to the following series of equations, since z 6= 0:

−2z

(
γ2z(z + 1) +

2

z(z + 1)
+ 1

)
+ 4− 2γz(z + 1) = 0

−2γ2z2(z + 1) +
4z

(z + 1)
− 2z − 2γz(z + 1) = 0

−γ2z(z + 1)2 + 2− (z + 1)− γ(z + 1)2 = 0

γ2z3 + γ(2γ + 1)z2 + (γ + 1)2z + γ − 1 = 0 .

By monotonicity, the latter cubic polynomial has a nonnegative real root if and only if γ ≤ 1, i.e.
χµ2 ≤ 1. In the case γ > 1, it cannot have a complex root ω such that <(ω) ≥ 0 either. Suppose it
is the case. Then, ω is another root, and the relations between roots and coeffients imply that

−γ2(2<(ω) + ξ) = γ(2γ + 1) ⇐⇒ 2<(ω) = −ξ − 2− 1

γ
,

where ξ is the real root of the cubic polynomial. To conclude, it is enough to show that ξ > −2.
Indeed, by evaluating the cubic polynomial at z = −2, we obtain:

−8γ2 + 4γ(2γ + 1)− 2(γ + 1)2 + γ − 1 = −2γ2 + γ − 3 < 0 .

This concludes the proof of Lemma A.3.

The stability results stated in Proposition 1.1 follows from Lemma A.1 and Lemma A.3, and the
following observation about the roots of P :

γ− = χµ2
− < 1 < γ+ = χµ2

+ .
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B Definitions and useful inequalities

Let us recall some classical definitions.

Definition B.1. Given two probability measures p, q on R+, we define the relative entropy of p with
respect to q by

H(p|q) =

∫ ∞
0

p(x) log
p(x)

q(x)
dx =

∫ ∞
0

q(x)

(
p(x)

q(x)
log

p(x)

q(x)
− p(x)

q(x)
+ 1

)
dx ≥ 0 .

The Fisher information of p with respect to q is defined as the quantity

I(p|q) =

∫ ∞
0

p(x)

(
∂x log

p(x)

q(x)

)2

dx .

Moreover if p, q have finite second moment, [37], the quadratic Wasserstein distance W (p, q) is
defined by

W (p, q) =

√
inf

π∈Π(p,q)

∫∫
R+×R+

|x− y|2 dπ(x, y) ,

where Π(p, q) denotes the set of probability measures on R+ × R+ with marginals p and q.
Finally, we consider similarly another Wasserstein distance

W1(p, q) = inf
π∈Π(p,q)

∫∫
R+×R+

|x− y|dπ(x, y) ,

There are several results concerning possible representations of Wasserstein distances when it is
specialized to the real line. In such a case it can be considerably simplified in terms of the distribution
functions F (x) =

∫ x
0 p(y) dy, x ∈ (0,∞), associated to probability measures p, [37].

Theorem B.2 (Representation for W ). Let p and q be probability measures on R+ with respective
distribution functions F and G. Then

W 2(p, q) =

∫ 1

0
|F−1(t)−G−1(t)|2 dt ,

and

W1(p, q) =

∫ 1

0
|F−1(t)−G−1(t)|dt =

∫ ∞
0
|F (x)−G(x)| dx ,

where F−1 is the pseudo-inverse function:

F−1(t) = inf{x ∈ R : F (x) ≥ t} , 0 < t < 1.

Lemma B.3. Let (p, p), and (n,m) be two pairs of probability measures on R+ with distribution
functions (P , P ) and (N,M), respectively. Suppose that they are ordered such that P ≤ N,M ≤ P ,
then the Wasserstein distances are ordered as follows,

W (n,m) ≤W
(
p, p
)
, W1(n,m) ≤W1

(
p, p
)
.

The following lemma can be applied to interpolation between p and δ0.
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Lemma B.4. Let p, q be two probability measures on R+ with finite r moment for r ∈ {1, 2} and let
0 < µ < 1, then

Wr(µδ0 + (1− µ)p, µδ0 + (1− µ)q) = (1− µ)1/rW (p, q).

Proof. This results is of course valid for any r ≥ 1. It can be established by direct computation on
the pseudo inverse.

The two following inequalities are useful to link the relative entropy, and the Fisher information
arising as a part of the entropy dissipation, see [37].

Lemma B.5 (Log-Sobolev inequality). Assume that q satisfies a Gaussian concentration principle
i.e. q(x) = e−V (x) with V ′′(x) ≥ α > 0, then the logarithmic Sobolev inequality holds true

I(p|q) ≥ 2αH(p|q) .

Lemma B.6 (HWI inequality for exponential measure). Assume that q(x) = λe−λx then the follow-
ing inequality holds true

I(p|q) ≥
(
H(p|q)
W (p, q)

)2

.

Usually, convergence in the L1 norm is controlleb by the entropy by means of the Csiszár-
Kullback inequality, [15, 25].

Proposition B.7 (Csiszár-Kullback inequality). For any non-negative functions f, g ∈ L1(R+) such
that

∫
R+
f(x) dx =

∫
R+
g(x) dx = M , we have that

‖f − g‖21 ≤ 2M

∫ ∞
0

f(x) log

(
f(x)

g(x)

)
dx .

C Well-posedness of the coupled PDE-ODE system

Well-posedness of the Cauchy problem (1.2)–(1.3)–(1.4) relies on a fixed point theorem, as usual.
For the sake of clarity, we restrict to a single coupling between the cell bulk density n(t, x) and the
boundary value µ(t). It contains the principal technical difficulty which arises from the coupling
between the ODE for µ and the PDE for n. We believe that the extension to the case of pairwise
interactions between two cells is straightforward based on the estimates derived below.

We proceed into two steps. Firstly, we obtain refined entropy estimates for the sole PDE problem,
without the coupling. As such, we consider two given functions µ1(t) and µ2(t), and we derive
suitable contraction estimates on n1, n2. We introduce the coupling in a second step.

C.1 Entropy estimates for the uncoupled PDE

Given the function µ, and a smooth nonnegative function χ, we consider the solution of the problem
∂tn(t, x)− ∂xxn(t, x)− χ(µ(t))∂xn(t, x) = 0,

∂xn(t, 0) + χ(µ(t))n(t, 0) = n(t, 0)− µ(t),

n(0, x) = n0(x).

(C.1)
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It is classical that if we consider µ ≥ 0 and nonnegative initial data n0, then there exists a unique
solution which is also nonnegative. Moreover the following estimate

d

dt

∫
(1 + x)ndx = µ(t)− χ(µ(t))

∫
ndx,

ensures that
∫

(1 + x)ndx ≤
∫

(1 + x)n0 dx+
∫ t

0 µdt. Also, the classical entropy estimate

d

dt

∫
(n log n− n) dx = (C.2)

In order to compare two solutions n1, n2 associated with two inputs µ1, µ2, we introduce the
following Gajewski metric [20]:

dG(n1, n2) =

∫
H(n1) +H(n2)− 2H

(
n1 + n2

2

)
dx︸ ︷︷ ︸

∆H(n1,n2)≥0

,

where H is the convex function H(a) = a log a− a+ 1. In particular, for all a, b, we have:

H(b)−H
(
a+ b

2

)
= H ′

(
a+ b

2

)(
b− a

2

)
+

1

2
H ′′(c)

(
b− a

2

)2

, (C.3)

for some c ∈ [a, b], and a similar estimate at point a. This yields

∆H(a, b) = H(a) +H(b)− 2H

(
a+ b

2

)
≥ 1

4

(b− a)2

max(a, b)
≥ 1

4

(b− a)2

a+ b
, (C.4)

and similarly

∆H(a, b) ≤ 1

4

(b− a)2

min(a, b)
. (C.5)

This pointwise inequality turns into the following integral inequality by Cauchy-Scwhwarz:

dG(n1, n2) ≥ 1

4

∫
(n1 − n2)2

n1 + n2
dx ≥ 1

4

(∫
n1 dx+

∫
n2 dx

)−1(∫
n1 dx−

∫
n2 dx

)2

.

(C.6)
On the other hand, we have

d

dt
(dG(n1, n2)) =

∫
log

(
2n1

n1 + n2

)
∂tn1 + log

(
2n2

n1 + n2

)
∂tn2

= − log

(
2n1(0)

n1(0) + n2(0)

)
(n1(0)− µ1)− log

(
2n2(0)

n1(0) + n2(0)

)
(n2(0)− µ2)

−
∫
∂x log

(
2n1

n1 + n2

)
(∂xn1 + χ1n1)−

∫
∂x log

(
2n2

n1 + n2

)
(∂xn2 + χ2n2)

In the sequel, we use the notation qi = 2ni
n1+n2

and notice that q1 + q2 = 2 and thus ∂xq1 = −∂xq2.
The previous estimate is equivalent to the following one:

d

dt
dG(n1, n2) = µ1 log q1(0) + µ2 log q2(0)−∆H(n1(0), n2(0))

−
∫ (

n1 + n2

2

)
∂xq1(∂x log n1 + χ1)−

∫ (
n1 + n2

2

)
∂xq2(∂x log n2 + χ2).
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To bound the cross term involving µi and ni(0) in the first line, we notice that µ1 log q+µ2 log(2−q)
reaches a maximum for the critical value q∗ satisfying

µ1

q∗
=

µ2

2− q∗
, q∗ =

2µ1

µ1 + µ2
.

Therefore, the first line is upper bounded by

∆H(µ1, µ2) = µ1 log

(
2µ1

µ1 + µ2

)
+ µ2 log

(
2µ2

µ1 + µ2

)
We arrive at

d

dt
dG(n1, n2) ≤ ∆H(µ1, µ2)−∆H(n1(0), n2(0))

−
∫ (

n1 + n2

2

)
∂xq1(∂x log n1 + χ1)−

∫ (
n1 + n2

2

)
∂xq2(∂x log n2 + χ2)

= ∆H(µ1, µ2)−∆H(n1(0), n2(0))

−
∫ (

n1 + n2

2

)
∂xq1

(
∂x log

(
n1

n2

)
+ χ1 − χ2

)
.

We recall that n1
n2

= q1
2−q1 , so that ∂x log n1

n2
= ∂xq1

(
1
q1

+ 1
2−q1

)
. Hence we obtain

d

dt
dG(n1, n2) ≤ ∆H(µ1, µ2)−∆H(n1(0), n2(0))

−
∫ (

n1 + n2

2

)(
1

q1
+

1

2− q1

)
|∂xq1|2 − (χ1 − χ2)

∫ (
n1 + n2

2

)
∂xq1

Using again the relationship q1 + q2 = 2, we can rewrite the last but one integral term as∫ (
n1 + n2

2

)(
1

q1
+

1

2− q1

)
|∂xq1|2 =

∫ (
n1 + n2

2

)(
q1|∂x log q1|2 + q2|∂x log q2|2

)
=

∫
n1|∂x log q1|2 +

∫
n2|∂x log q2|2.

In addition, we notice that∣∣∣∣(χ1 − χ2)

∫ (
n1 + n2

2

)
∂xq1

∣∣∣∣ ≤ |χ1 − χ2|
∫ (

n1 + n2

2

)
|q1||∂x log q1|

≤ |χ1 − χ2|2

2

∫
n1 +

1

2

∫
n1|∂x log q1|2

Combining the integral terms, and symmetrizing the roles of n1, n2, we end up with our key estimate:

d

dt
dG(n1, n2) ≤ ∆H(µ1, µ2)−∆H(n1(0), n2(0)) +

|χ1 − χ2|2

2

∫
n1 + n2

2

− 3

4

(∫
n1|∂x log q1|2 +

∫
n2|∂x log q2|2

)
(C.7)
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C.2 The fixed point mapping

For a given function µ(t), we define n(t, x) as in Section C.1. Next, we define µout(t) as a solution
of the following ODE:

d

dt
µout(t) = n(t, 0)− µout(t) , or equivalently µout(t) = e−tµout(0) +

∫ t

0
es−tn(s, 0) ds

(C.8)
with the initial data µout(0) = 1 −

∫
n0(x) dx > 0. On the other hand, n(t, x) and µ(t) satisfy the

following relationship, obtained by integrating (C.1) with respect to space:

d

dt

∫
n(t, x) dx = µ(t)− n(t, 0). (C.9)

Consequently, (C.8) can be recast as:

µout(t) = e−tµout(0)+

∫ t

0
es−tµ(s) ds+

∫ t

0
es−tI(s) ds−I(t)+e−tI(0) , I(t) =

∫
n(t, x) dx.

(C.10)
Suppose we are given two input functions µi, i = 1, 2, then the two output functions µout

i , i =
1, 2 share the same initial data. Moreover, denoting Ii =

∫
ni(t, x) dx, we have

µout
1 (t)−µout

2 (t) = I2(t)− I1(t) +

∫ t

0
es−t(I1(s)− I2(s))ds+

∫ t

0
es−t(µ1(s)−µ2(s))ds (C.11)

We deduce from our key estimate (C.7) that

dG(n1(t), n2(t)) ≤
∫ t

0
∆H(µ1(s), µ2(s)) ds+

1

4
(Lipχ)2

∫ t

0
|µ1(s)− µ2(s)|2(I1(s) + I2(s)) ds,

(C.12)
where Lipχ = supµ∈(0,1) |χ′(µ)|. Finally, using the two pointwise inequalities (C.3)–(C.4), we
obtain

(I1(t)− I2(t))2

max(I1(t), I2(t))
≤
∫ t

0

(µ1(s)− µ2(s))2

min(µ1(s), µ2(s))
ds+ (Lipχ)2

∫ t

0
|µ1(s)− µ2(s)|2(I1(s) + I2(s)) ds.

(C.13)
By the combination of (C.11) and (C.13), we obtain a contraction estimate of the form

sup
t∈[0,T ]

|µout
1 (t)− µout

2 (t)| ≤ ω(T ) sup
t∈(0,T )

|µ1(t)− µ2(t)|, (C.14)

where ω(T ) = O(
√
T ), provided that µi, i = 1, 2 are uniformly bounded below, and Ii, i = 1, 2

are uniformly bounded above on [0, T ]. The latter condition is clearly verified on the appropriate
functional space:

XT =

{
µ ∈ C([0, T ]), µ(0) = 1−

∫
n0(x) dx, µ(0)e−t ≤ µ(t) ≤ 1

}
,

at least for short time, depending on n0(x). It remains to check that the solution n(t, x) of the
coupled problem is such that µ(t) stays uniformly strictly above 0 and below 1 on [0, T ] for arbitrary
time T . The former is clear from the estimate µ(0)e−t ≤ µ(t). The latter can be derived using the
conservation relation µ(t) +

∫
ndx = 1, and the fact that n cannot vanish in finite time.
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